
 1

DRAFT Unicode technical note NN

Auxiliary character decompositions for supporting Hangul

Kent Karlsson

2006-09-24

1 Introduction

The Hangul script is very elegantly designed. There are just a small number of letters (28,
plus a small number of variant letters introduced later, but the latter have fallen out of use)
and even a featural design philosophy for the shapes of the letters.

However, the incarnation of Hangul as characters in ISO/IEC 10646 and Unicode is not
so elegant. In particular, there are many Hangul characters that are not needed, for
precomposed letter clusters as well as precomposed syllable characters. The
precomposed syllables have arithmetically specified canonical decompositions into Hangul
jamos (conjoining Hangul letters). But unfortunately the letter cluster Hangul jamos do not
have canonical decompositions to their constituent letters, which they should have had.
This leads to multiple representations for exactly the same sequence of letters. There is
not even any compatibility-like distinction; i.e. no (intended) font difference, no (intended)
width difference, no (intended) ligaturing difference of any kind. They have even lost the
compatibility decompositions that they had in Unicode 2.0. There are also some problems
with the Hangul compatibility letters, and their proper compatibility decompositions to
Hangul jamo characters. Just following their compatibility decompositions in
UnicodeData.txt does not give any useful results in any setting.

In this paper and its two associated datafiles these problems are addressed. Note that
no changesno changesno changesno changes to the standard Unicode normal forms (NFD, NFC, NFKD, and NFKC) are
proposed, since these normal forms are stable for already allocated characters. Instead
the decomposition mappings in the first datafile associated with this paper can be used as
a correction tailoring of the normative decomposition mappings, using additional and
replacement canonical and compatibility decomposition mappings listed in the data file
AuxiliaryHangulDecompositions.txt. These decomposition These decomposition These decomposition These decomposition mapping mapping mapping mappings are s are s are s are notnotnotnot proposed for proposed for proposed for proposed for
UnicodeData.txtUnicodeData.txtUnicodeData.txtUnicodeData.txt.

The Korean standard KS X 1001 allows for Hangul syllables to be represented as
particular sequences of otherwise non-conjoining Hangul letters, but interpreted in a
conjoining way if the syntax is fulfilled. To arrive at the proper interpretation for these
sequences via a table of compatibility-like decomposition mappings, multiple
decomposition mappings are needed for each compatibility Hangul letter. One of the
multiple decomposition mappings for a Hangul compatibility character is used, depending
on the character’s position in the syntactic sequence instance. These context dependent
decomposition mappings are listed in AuxiliaryKSX1001Decompositions.txt. This is to be
used on top of the auxiliary decomposition mappings of
AuxiliaryHangulDecompositions.txt.

Most applications can ignore the context dependent decomposition mappings
completely. Indeed the best use of AuxiliaryKSX1001Decompositions.txt is by character
encoding conversion programs, using the context dependent decomposition mappings as
well as the standard (arithmetically specified) and auxiliary canonical compositions
(specified in AuxiliaryHangulDecompositions.txt). Note though, that such legacy data, that
actually use such KS X 1001 sequences and not only Hangul syllable characters, may be
fairly rare.

 2

1.1 Letter Hangul jamo characters

“In the winter of our year 1443-4, our King [Seycong] originated
and designed the twenty eight letters of the Correct Sounds.
The letters are simple and fine and very easy to learn; their
shifts and changes in function are endless; and there are no
[Korean] sounds that cannot be written.”

[Ceng Inci, in Hwunmin Cengum
Haylyey, 1446; as translated in ‘The
Korean Language’ by Ho-Min Sohn,
Cambridge University Press,1999; the
clarifications in brackets are mine.]

A single-letter Hangul jamo character represents a basic conjoining Hangul letter, or a
variant of such a letter. There are 17 basic consonant letters, here given in the order as
first presented:
 ㄱ, ㅋ, ㆁ, ㄷ, ㅌ, ㄴ, ㅂ, ㅍ, ㅁ, ㅈ, ㅊ, ㅅ, ㆆ, ㅎ, ㅇ, ㄹ, ㅿ
(the glyph for ㆁ (yesieung) should have a clear ‘shoot’ on top), and 11 basic vowel letters,
again in the order as first presented:
 ㆍ, ㅡ, ㅣ, ㅗ, ㅏ, ㅜ, ㅓ, ㅛ, ㅑ, ㅠ, ㅕ
(originally the short dashes now attached to the long dashes were dots, and dot is now
often drawn as a short vertical dash). Some of the consonant letters have variants that
were invented after the invention of Hangul (the following variants have shortened right or
left leg):
 ᅎ and ᅐ as variants of ㅈ,
 ᅔ and ᅕ as variants of ㅊ,
 ᄼ and ᄾ as variants of ㅅ,
From the very beginning, in the document introducing the then-new script, letter
combinations were used for denoting sounds in Korean, Chinese, Mongolian, and
Japanese. For instance: doubled consonants for tense pronunciation, ㅇ (ieung) below for
light pronunciation (that particular letter combination did not catch on), and vowel letter
combinations for diphthongs as well as single vowel sounds.

There may be a small number of historic variant letters that are still missing as
encoded characters, e.g. 45 degree turned mium (ㅁ). There are also two Korean
combining punctuation characters that are missing as coded characters.

The variants, as well as a few of the original basic letters, have fallen out of use. For
example, ㆁ (YESIEUNG, a small circle with a ‘shoot’ on top), for the sound “ng”, has in the
trailing position been replaced by ㅇ (IEUNG, a small circle), originally silent, as it still is in
the leading position. ㆆ, ㅿ and ㆍ represent sounds not present in modern official Korean,
though the sounds are still present in some dialects. As noted above certain letter
combinations stand for separate consonantal or vowel sounds that do not have their own
letter. This is similar to what is often done on the Latin script, like “sh” and “ng” and others.
Originally, there were also two tone marks, applicable to a syllable block. The tone marks
have fallen out of use, as have the (pre-Hangul) Korean punctuation marks.

The letters for a syllable are grouped into a “syllable block”, typographically the size of
a Hàn ideograph. In practice, there are at most (in total, however represented, see below)
three consonant letters in a consonants cluster, and at most (in total, however
represented) three vowel letters in a vowel cluster. Note that some vowel combinations

 3

look very much the same (like e.g. A-I and I-EO, EU-YO and YU-EU), especially as they
are normally typeset so close that the letters lightly touch. But for each such same-looking
pair of vowel pairs, only one of those vowel pairs is used.

The encoding as characters in Unicode/10646 for Hangul jamo employ a little coding
trick to make the determination of syllable boundaries simple: the consonants are encoded
twice, leading and trailing. The leading consonants have the Unicode property
Hangul_Syllable_Type = LLLL, the training consonant clones have Hangul_Syllable_Type = TTTT,
while the vowels have Hangul_Syllable_Type = VVVV. Other possible ways that could have
been used to encode syllable blocks include:

(a) Using an initiator/separator/terminator character before/between/after syllables. A
similar approach is sometimes used for the Hangul compatibility letters, see below,
using an initiator.

(b) Using combining characters for the Hangul letters that follow the first one in a
syllable. This was the original Unicode design for Hangul, and it is somewhat
similar to the approach chosen; compare also the combining Latin letters above
that have been encoded.

Note that the current model, with conjoining jamo characters, can be seen as base +
combining characters for a Hangul syllable block, if we employ the following definition of
'conjoining jamo':

• A Choseong Jamo character that immediately follows a Choseong Jamo character
shall be treated as a combining character.

• A Jungseong Jamo character that immediately follows a Choseong Jamo
character, a Jungseong Jamo character, or a precomposed Hangul syllable
character that has no Jongseong part (Hangul syllable type LVLVLVLV) shall be treated as
a combining character.

• A Jongseong Jamo character that immediately follows a Jungseong Jamo
character, a Jongseong Jamo character, or a precomposed Hangul syllable
character shall be treated as a combining character.

• A precomposed Hangul syllable character that immediately follows a Choseong
Jamo character shall be treated as a combining character.

• All other instances of a Choseong Jamo character, a Jungseong Jamo character, a
Jongseong Jamo character, or a precomposed Hangul syllable character shall be
treated as a base character (i.e. not combining).

This makes a Hangul syllable block (including combining characters applied to it) to be
a special case of combining sequence. Note that the lead consonants cannot be regarded
as true base characters, since the lead part may consist of several lead consonants (see
below), and should be followed by at least one vowel conjoining jamo. Similarly, the vowel
and trail consonant jamos cannot be regarded as true combining characters.

1.2 Basic syntax of Hangul syllables

A well-formed Hangul syllable (one with a lead consonant and a vowel) has the following
syntax (here disregarding precomposed Hangul syllable characters, but see below):
 Hangul-syllable ::=::=::=::= L+ V+ T* M*
where L stands for a leading consonant jamo character, V stands for a vowel jamo
character, T stands for a trailing consonant jamo character, and M stands for a combining

 4

mark, in particular a (historic) Hangul tone mark (U+302E, U+302F). Note that there may
be several lead consonants, several vowels, and several trailing consonants. The tone
mark (if any, or more generally, the sequence of combining characters) applies to the
entire preceding syllable, not just the last part of it, since the Hangul syllable components,
including the precomposed Hangul syllable characters, are conjoining characters, not
really base characters. The tone mark glyphically appears at the left of a syllable, so for a
L L V T M syllable, where M stands for a Hangul tone mark, the glyph for M is to be
rendered to the left of the (possibly composed) glyph for L L V T, not to the left of the
(sub)glyph for T.

Typographically, the leading consonants are put in the top left part or the top part of a
syllable block depending on the shape of a following vowel or vowel cluster, normally left
to right; the vowels are put under, to the right of, or under and to the right of the leading
consonants, left to right or top-down; and trailing consonants are put at the bottom of the
syllable block, normally left to right. An exception is when IEUNG is after consonant (other
than IEUNG) or a doubled consonant: IEUNG is then placed under juet that consonant or
doubled consonant before it (see the sample glyphs for U+111D, U+112B, U+112C,
U+1158 and their counterparts in the final consonant block for how such compositions are
laid out). Note that I-ARAEA is laid out vertically, i.e. ARAEA is a horizontal vowel, except
after ARAEA.

In addition, two filler jamos are included in the encoded repertoire: HANGUL
CHOSEONG FILLER (Lf), i.e. lead filler, and HANGUL JUNGSEONG FILLER (Vf), i.e.
vowel filler. They do not stand for any letters, so that they have general category LoLoLoLo is
misleading. Indeed, they also have the property of being Default_Ignorable_Codepoint (but
they are not ignorable when finding Hangul syllable block boundaries, nor for collation). (In
a combining characters approach, the lead filler would have been replaced by a no-break
space, and the vowel filler would just not be needed at all). They are used as placeholders
for missing letters, where there should be at least one letter. Note that there has to be at
least one lead consonant and at least one vowel in a well-formed Hangul syllable
according to the syntax above. There is no jongseong (trail) filler, so the fillers are not
intended as placeholders inside a consonants cluster or vowels cluster (but we will allow a
choseong filler between a non-ieung choseong consonant and a choseong IEUNG, but
only for a hypothetical special case). The two Hangul jamo filler characters can in many
cases be inserted automatically into one or two non-well-formed Hangul syllables to fullfill
(L+|Lf) (V+|Vf) T* M* (where neither L nor T are fillers; see The Unicode Standard
version 4.0), but the result might not be what was intended. The fillers are not part of the
orthography. They are used only to fullfill the representation recommendation also for
‘incomplete’ syllables which are often necessary when explaining about word roots and
other elements that play important roles in Korean grammar.

What has been presented so far here is fully sufficient for representing any text in
Hangul: historical (except for as yet missing historic variants, if any), modern, and future
(unless new letters are invented, which has already happened in at least one case, see [8],
and gain use).

Note that Hangul is a very elegantly designed alphabetic script. Typographic features,
such as cluster ligatures, variant (sub)glyph selection (each letter need to have a few
handfulls of variant glyphs to be used depending on which syllable the letter is in), and
syllable layout should be handled by rendering and font mechanisms. Modern font
technologies (like Opentype with Uniscribe, AAT or Opentype with ATSUI, Pango, and
Graphite) make this much more technically accessible than before. Hangul is not an
ideographic script at all, even though the typographic design of the syllable blocks look a
bit like ideographs, they are quite distinct but fit well to be mixed with Hàn ideographs.

 5

The following subsections are about coded character additions that are unnecessary
for the representation of Hangul, but have been added for various other reasons, such as
compatibility with older standards. They generally introduce a number of difficulties for all
processes handling Hangul in a non-trivial way.

1.3 Letter cluster Hangul jamo characters

Letter cluster Hangul jamo characters represent either clusters of two or three consonants
(as introduced above), or clusters of two or three vowels (as introduced above). Cluster
jamo characters for several (not all) consonant and vowel clusters occurring, or has
occurred, in Hangul texts are allocated in Unicode/10646.

Asked for the list of Hangul letter clusters occurring in all known Korean text
(published/written since the invention of Hangul) by Microsoft Korea, a group of Korean
linguists came up with:

• 34 lead consonant clusters in addition to the 67 (90−23) lead consonant clusters
already allocated;

• 28 vowel clusters in addition to the 55 (66−11) vowel clusters already allocated;
• 59 trail consonant clusters in addition to the 65 (82−17) trail consonant clusters

already allocated.
This does not take into account the Hangul jamo letter variants that may still not be
allocated in Unicode 5.0.

The letter cluster jamos work as L, V, or T respectively according to their
Hangul_Syllable_Type in the syllable syntax given above. But as mentioned, one can
preferably represent the sequence of consonants or sequence of vowels using single-letter
Hangul jamo characters. The letter cluster Hangul jamos are thus not needed for
representing Hangul texts, and no more letter cluster jamos should be allocated.

Note that all of the letter cluster jamos are completely unnecessary. Not even the
doubled consonants constitute letters of their own, though that is sometimes claimed. The
Hangul design document of 1446 is quite clear on the matter. That is, ssangkiyeok, for
instance, in not another letter that looks like two kiyeok, it really is two kiyeok. The same
goes for the kapyeoun- combinations: they are really compositions with ieung at the end
(written below the 'kapyeoun-ed' letter or double letter), they are introduced that way in the
design document of 1446.

There is a confusing similarity between ieung and yesiung, especially in modern fonts,
and that the function of yesieung has been subsumed by ieung (in a trail position).
Therefore, some of the -IEUNG named composite jamos may actually have a YESIEUNG as
a component. This does not hold for CHOSEONG SSANGIEUNG, as that is clearly
exemplified in the design document of 1446, it is really doubled IEUNG.

For the other IEUNG composites, there are two reasonable alternatives:
1. Treat all of them as IEUNG. That is consistent with the naming.
2. Treat all of them as YESIEUNG. That is what they most probably were intended to

be, also for leading instances as yesieung (ng) is used leadingly.
Either way does not, in the end, matter all that much, since the "other" choice can always
be expressed anyway. Therefore in the associated datafiles, option 2 has been applied.

It has been suggested that ieung, in a lead position, may have had special meaning. In
particular that ieung may follow, but not be rendered under, another consonant. However,

 6

there is no support in the design document of 1446 for IEUNG to be used that way. But it
can be encoded as <L, HANGUL CHOSEONG FILLER, HANGUL CHOSEONG IEUNG> (in
which case the filler is not ignorable).

1.4 Hangul compatibility letters

The Hangul compatibility letters and half-width letters encode the consonants and some of
the consonant clusters only once each, no duplicate encoding for lead and trail. The
Hangul compatibility letters are normally rendered as spacing characters without any
conjoinment. They may be used when talking about Hangul letters in isolation, when
writing Hangul texts in ‘linear form’ or when using KS X 1001 sequences to represent
Hangul syllables that do not have a precomposed syllable character in KS X 1001.

 Writing Hangul in ‘linear form’ is obsolete, and ‘linear Hangul’ cannot be used in IDNs,
since NFKD (and NFKC) is wrong for it. But, interestingly, HANGUL LETTER EU, may in
‘linear form’ be given in a U-like shape, see reference [6], page 39. The same reference
page also has an above-script u-like diacritic to indicate that two vowel letters are
combined to form a single vowel. Those two characters should be allocated in Unicode.
Finally, leading IEUNGs are omitted in ‘linear Hangul.

Each (full- or half-width) Hangul compatibility letter should normally be considered as a
free-standing form, with compatibility mappings of the forms C →→→→ L+ Vf (or possibly even
C →→→→ Lf Vf T+) and W →→→→ Lf V+; i.e. to Hangul syllables. In the associated datafile, the full-
width forms are given "<free>" decompositions, since there is another representation for
them: as Hangul syllables using CHOSEONG FILLER or JUNGSEONG FILLER, as given
here. The latter is more general, but due to the prevalent use of (full-width) Hangul
compatibility letters, the latter should be preferred when available. The “<free>”
decompositions mappings are very close to auxiliary canonical decompositions, but the
Hangul compatibility letters are not conjoining.

However, that leaves the (HALFWIDTH) HANGUL FILLERs useless. Indeed, they should
not be rendered at all, despite that they have been given the property Lo. Note that these
FILLERs are also given the property of Default_Ignorable_Codepoint.

The compatibility Hangul FILLER characters, U+3164 (HANGUL FILLER) and U+FFA0
(HALFWIDHT HANGUL FILLER), are there for compatibility with Korean standard KS X
1001. If at all interpreted (which is not expected for most applications), these filler
characters work very differently from the jamo filler characters. When, and very much if,
converting from Hangul compatibility letter sequences (according to KS X 1001) to proper
conjoining Hangul letters (which may then be composed to precomposed Hangul syllable
characters; there are more of them in Unicode/10646 than in KS X 1001), the Hangul
compatibility syllables have the (generalised) syntax:
 Hangul-compatibility-syllable ::= Hf (C+|Hf) (W+|Hf) (C+|Hf) M*
where C is a (possibly half-width) Hangul compatibility consonant letter or compatibility
consonant letter cluster, W is a (possibly half-width) Hangul compatibility vowel letter or
compatibility vowel letter cluster, and Hf is a (possibly half-width) compatibility Hangul
FILLER character.

It may be reasonable to convert input in compatibility Hangul characters to a string of
conjoining jamos (Hf (C+|Hf) (W+|Hf) (C+|Hf) M* → L+ V+ T* M*). This may be
done in particular when converting from an encoding based on KS X 1001 (and conversely
generate such sequences when converting to such an encoding). Note that the sequence
starting Hf is to be removed (note again the FILLERs are not letters, despite their general
category as Lo), so is a trailing Hf, while a lead Hf should be converted to a Lf, and a

 7

vowel Hf should be converted to a Vf. Similar conversions (with other syntax) may be done
as part of the working of a Hangul IME. Sequences of compatibility Hangul letters are not
normally expected to display as conjoined Hangul syllables, but display as a sequence of
freestanding letters. Note that the standard normal forms NFKD and NFKC do not do this
conversion but return (in all views) incorrect results for strings containing these characters.

1.5 Hangul syllable characters

A lot of (far from all) Hangul syllables have a character of their own in the range AC00-
D7A3. The allocated ones each have an arithmetic canonical decomposition into two
(choseong, jungseong) or three (choseong, jungseong, jongseong) Hangul jamo
characters in the ranges 1100-1112, 1161-1175, and 11A8-11C2. Some of the
precomposed Hangul syllable characters thus decompose into a sequence of jamos where
some of them are letter cluster jamos.

The Hangul syllable characters alone can represent modern Hangul words written in a
way that is currently orthographically acceptable. They cannot represent all historic Hangul
words (Middle Korean), nor can they represent a closer-to-pronunciation writing of all
modern words. However, all Korean words can elegantly be represented by sequences of
single-letter Hangul jamo characters plus optional tone mark.

Let SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBaseM1 = 0x11A7 (one
less than the lowest code point for a modern Hangul jamo trail consonant (clusters)),
VCount = 21, TCountP1 = 28 (one more than the number of trailing Hangul consonant
(clusters) that occur in modern Korean), NCount = VCount * TCountP1 (588).

The arithmetic decompositions (Unicode 5.0) for precomposed Hangul syllable
characters are as follows:
Each Hangul precomposed syllable character of Hangul_Syllable_Type LVLVLVLV has a canonical
decomposition into LLLL and VVVV Hangul jamos:

LV L in 1100–1112 V in 1161–1175

s → LBase + ((s – SBase) div NCount) VBase + (((s – SBase) mod NCount) div TCountP1)

Each Hangul precomposed syllable character of Hangul_Syllable_Type LVTLVTLVTLVT has a
canonical decomposition into a LVLVLVLV Hangul syllable character and a TTTT Hangul jamo:

LVT LV T in 11A8–11C2

s → SBase + (((s – SBase) div NCount) * NCount) TBaseM1 + ((s – SBase) mod TCountP1)

Note: This description is slightly different from that in The Unicode Standard 3.0 and 4.0,
but the net result for normalisation is the same. This description, with the intermediary step
with LVLVLVLV for LVTLVTLVTLVT syllable characters makes recomposing easier to describe, as it falls in line
with the other tabular canonical decompositions, which are unary or binary, but never
tertiary (or more) nor tertiary with a twist. Note that this limitation to binary canonical
decompositions also holds for AuxiliaryHangulDecompositions.txt, so that the data
(almost) fits with the normalisation algorithm described in UAX 15. (The “almost” part is
covered below.)

The arithmetic decompositions imply arithmetic compositions for LLLL and VVVV:
LV L in 1100–1112 V in 1161–1175

SBase + ((a – LBase) * NCount) + ((b – VBase) * TCountP1) ← a b

Similarly for LVLVLVLV and TTTT:
LVT LV T in 11A8–11C2

c + (d – TBaseM1) ← c d

 8

Note that for maximal final composition these arithmetic composition rules should be
applied to Hangul jamo substrings that are already maximally composed for modern letter
combinations according to the tabular canonical composition rules for Hangul jamo
(presented in this paper; the data is found in the accompanying file
AuxiliaryHangulDecompositions.txt). See subsection 2.2 below.

1.6 Full syntax for Hangul syllables, including Hangul syllable
characters

A Hangul syllable, allowing for precomposed syllable characters, has the following syntax
(see page 86 of The Unicode Standard version 4.0, here with adjustment for tone marks):
 Hangul-ext-syllable ::= L+ V+ T* M* | L* LV V* T* M* | L* LVT T* M*
where LV is a precomposed consonants-vowels Hangul syllable character, LVT is a
precomposed consonants-vowels-consonants Hangul syllable character.

1.7 Circled and parenthesised Hangul letters and syllables

All of the parenthesised or circled Hangul characters should be treated as compatibility
characters with a compatibility mapping to a proper syllable sequence of Hangul single-
letter characters. I.e., they should not have mappings to just a single Hangul jamo letter
even for the single-letter characters of this kind; but include a filler jamo to make a well-
formed Hangul syllable instead or use compatibility letters in the decomposition.

2 Hangul jamo auxiliary canonical decomposition mappings

At one point (Unicode version 2.0) the letter cluster jamos had compatibility
decompositions into single-letter jamos. These were removed due to problems with
maintaining precomposed Hangul syllable characters in NFKC. Now there is,
unfortunately, no longer any (canonical or compatibility) decomposition of the letter cluster
jamos into single-letter jamos in UnicodeData.txt. This leads to multiple representations of
exactly the same piece of Hangul text that cannot be normalised to the same string of
code points with any of the standard normal forms. A better way to deal with this problem
is to give auxiliary canonical decompositions into single-letter jamos for each letter cluster
character. These are given in the AuxiliaryHangulDecompositions.txt datafile. The
decomposition mappings that stay as they are listed in UnicodeData.txt are not mentioned
in the auxiliary decompositions datafile.

Using the auxiliary canonical decomposition mappings, original text using Hangul
syllable characters (but no Hangul jamo characters) are maintained in a modified NFC
which is augmented with the auxiliary canonical decompositions. Whenever possible the
cluster Hangul jamos should be treated as having these canonical decompositions into the
corresponding sequence of single-letter Hangul jamos. These decompositions should also
be used in inverted form (compare NFC and NFKC canonical combination step) when a
maximally precomposed form is desired. However, the auxiliary decomposition mappings
of AuxiliaryHangulDecompositions.txt shall notshall notshall notshall not be used for computing any of the Unicode
normal forms.

Spell checking, rendering, collation, identifier comparisons, etc. should use the
auxiliary decompositions for an NFC-like modified normal form. Note, however, that for
rendering, if a precomposed Hangul syllable is preceded by a CHOSEONG jamo, or the
precomposed Hangul syllable is of type LVT and is followed by a JONGSEONG jamo or is
of type LV and is followed by a JUNGSEONG jamo or a JONGSEONG jamo, then it is better
to decompose the precomposed Hangul syllable character before the rendering.

 9

2.1 Maximally decomposed Hangul forms

When computing a maximally decomposed form (compare NFD and NFKD) using the
auxiliary decompositions presented here, the process works as the normal algorithm for
computing NFD or NFKD respectively, except that the data in
AuxiliaryHangulDecompositions.txt is used to override the some of the data in
UnicodeData.txt.

2.2 Maximally composed Hangul forms

When computing a maximally composed form (compare NFC and NFKC) using the
auxiliary decompositions presented here, the process works as the normal algorithm for
computing NFC or NFKC respectively, except that the data in
AuxiliaryHangulDecompositions.txt is used to override the some of the data in
UnicodeData.txt, plus the following modification is done to the composition step.

One algorithmic description needs to be added, for determining a unique maximally
composed auxiliary normal form for Hangul. Purely going from left to right when doing the
compositing does not give maximal composition to precomposed characters. For instance,
that would not maintain strings written purely in Hangul syllable characters, recreating the
given Hangul syllable characters. So instead, the jamo and Hangul syllable characters are
composed as follows:

1. First, compose Hangul jamo substrings according to the auxiliary tabular canonical
decompositions. (Note that the composition process works from the start of the
substring, composing two characters to one when possible, see UAX 15.)

2. Repeat step one; however, this is needed only if the first iteration produced <U+1169,
U+1168> (<HANGUL JUNGSEONG O, HANGUL JUNGSEONG YE>) or produced
<U+116E, U+1168> (<HANGUL JUNGSEONG U ,HANGUL JUNGSEONG YE>).

3. Finally, compose according to the arithmetic canonical decompositions of Hangul
syllable characters (see section 1.5 above).

It is possible to reformulate the composition, and the decomposition mappings, so that
these extra steps are not needed. However, that would mean allocating two more two-
letter jamos (O-YEO, U-YEO), and replace the arithmetic decomposition of the
precomposed Hangul syllable characters by a tabular specification of the (new)
decomposition mappings.

3 Hangul compatibility letter auxiliary compatibility
decomposition mappings

Compatibility Hangul letters (U+3131–U+318E) should be regarded as having the auxiliary
compatibility decomposition mappings in AuxiliaryHangulDecompositions.txt. These
decompositions shall not be used inverted.

Collation, case insensitive comparisons, spell checking, and some other processes
should use the auxiliary decompositions for computing an NFKC-like normal form, but they but they but they but they
must must must must notnotnotnot be used for NFKD nor NFKC be used for NFKD nor NFKC be used for NFKD nor NFKC be used for NFKD nor NFKC.

3.1 Full-width Hangul compatibility letters

The full-width Hangul compatibility letters should be interpreted in a free-standing context.
They should then decompose into “incomplete” Hangul syllables, including an appropriate
jamo filler character. Such decompositions are given in the datafile

 10

AuxiliaryHangulDecompositions.txt. These decompositions are very close to canonical
decompositions, except that the (full-width) compatibility letters are not conjoining.

3.2 Half-width Hangul compatibility letters

The compatibility mappings of the half-width compatibility letters are ok as they are in the
UnicodeData.txt file. But when decomposed to the full-width form, the auxiliary
decomposition mappings should then be used for further decomposition to Hangul jamos.
If a more composed form is desired, then the auxiliary canonical decomposition mappings
for the Hangul jamo characters are used in reverse (see above).

3.3 Other Hangul compatibility characters

The Hangul parenthesised and Hangul circled characters should in many cases (collation,
for instance) be regarded as having the compatibility decompositions given in the datafile
AuxiliaryHangulDecompositions.txt.

3.4 Sort order for Hangul

Ordering (sort order) of Hangul syllables should be based on a weighting scheme that
orders cluster characters as sequences of single letters, i.e. as if they were maximally
canonically decomposed. The clustering as such, as used for collation, should be achieved
by other mechanisms (see reference [7]) than using letter cluster characters. Even so, the
reason for allocating the letter cluster characters may have been one of the original reason
for having these cluster characters, and why they did not get the canonical decompositions
that they should have had from early on. The clustering is important to get the correct sort
order for Hangul strings, both for historical clusters that do not have a letter cluster
character, and in relation to e.g. Hàn characters that may be given in a string after a text in
Hangul.

4 Hangul KS X 1001 conversion decompositions

KS X 1001 has a compatibility Hangul syntax: Hf C W (C|Hf); an initiator, lead
consonants, vowels, and trail consonants. Note that Hf is used in such a way that, if this
syntax is striclty followed, one can determine if an instance of a C is used as a lead or a
trail consonant. This syntax can, without introducing any ambiguity, be generalised to Hf
(C+|Hf) (W+|Hf) (C+|Hf). This kind of syllable analysis should not be commonly done for
Hangul compatibility letters. However, if this syntax is analysed for, one gets the four parts:

a. starter part (a compatibility FILLER), which works as an initiator,
b. lead consonants part (at least one consonant letter (cluster) or a single FILLER),
c. vowels part (at least one vowel letter (cluster) or a single FILLER), and
d. trail consonants part (at least one consonant letter (cluster) or a single FILLER).

4.1 Full-width and half-width Hangul compatibility letters

The full-width Hangul compatibility letters should in the context of KS X 1001 Hangul
composition (generalised) syntax be interpreted as having mappings directly to jamo
letters (no fillers). These special decompositions could also be useful in a Hangul IME, that
converts compatibility letters typed on a keyboard into Hangul jamos. The interpretatiuon
may be slighly different, since one would not want to impose the exact KS X 1001 syntax
on such an application. In other cases their auxiliary <compat> decompositions should be
used instead. The KS X 1001 decompositions are syntactic position context dependent.
They are given in the datafile AuxiliaryKSX1001Decompositions.txt.

 11

The HANGUL FILLER has four conversion decomposition contexts in addition to the
free-standing one (<free> or <compat> in AuxiliaryHangulDecompositions.txt):
 <starter>, <lead>, <vowels>, and <trail>
The <vowels> context is mistakenly the only one given in the UnicodeData.txt file for its
<compat> decomposition of this character.

The Hangul compatibility consonant letters have two conversion decomposition
contexts in addition to the free-standing one (<free> or <compat> in
AuxiliaryHangulDecompositions.txt):

 <lead> and <trail>
The UnicodeData.txt <compat> decompositions mistakenly for these vary between the
<lead> (which was used, apart from the tag, when a single choseong was available) and
<trail> decompositions.

The Hangul compatibility vowels letters have one new decomposition context in
addition to the free-standing one (<free> or <compat> in
AuxiliaryHangulDecompositions.txt):

 <vowels>
Note that the UnicodeData.txt <compat> decomposition for these mistakenly are the same
(apart from the label) as the <vowels> decomposition.

The new decompositions in AuxiliaryHangulDecompositions.txt, which give the
decompositions for the free-standing context, together with the contextual decompositions
in AuxiliaryKSX1001Decompositions.txt should be used together as replacement to the
UnicodeData.txt decompositions, exceptexceptexceptexcept for computing standard normal forms for computing standard normal forms for computing standard normal forms for computing standard normal forms. The
contexts are <free> (for free-standing) (or <compat> for the half-width forms), <lead>,
<vowels>, <trail>, and <starter> (for KS X 1001 conversion).

5 Use of the auxiliary decomposition mappings

The KS X 1001 AuxiliaryKSX1001Decompositions.txt data should be used only by
character encoding conversions, Korean IMEs, or similar.

The use of AuxiliaryHangulDecompositions.txt is not so straightforward. As has been
mentioned a number of times above, they cannot be used for the standard normal forms,
since those are stabilised for sequences of already allocated characters. But we can
define auxiliary Hangul normal forms. The use of which will be described below.

• NFD-Hangul is produced in the same way as NFD, but using the auxiliary canonical
decompositions overriding some of the decomposition mappings of UnicodeData.txt.

• NFC-Hangul is produced in the same way as NFC, but using the auxiliary canonical
decompositions overriding some of the decomposition mappings of UnicodeData.txt,
and the algorithm adjustment described in section 2.1. (NFC-Hangulplus: recompose
using also the <free> decompositions as a last recomposition step?)

• NFKD-Hangul is produced in the same way as NFKD, but using the auxiliary
canonical and compatibility decompositions overriding some of the decomposition
mappings of UnicodeData.txt.

• NFKC-Hangul is produced in the same way as NFKC, but using the auxiliary
canonical and compatibility decompositions overriding some of the decomposition
mappings of UnicodeData.txt, and the algorithm adjustment described in section 2.1.

 12

(NFC-Hangulplus: recompose using also the <free> decompositions as a last
recomposition step?)

Since the different representations of Hangul strings that have the same NFD-Hangul
form are really equivalent spellings, and they do not necessarily have the same NFD form,
there are multiple representations of exactly the same spelled Hangul syllables. Indeed,
the HANGUL LETTERs also constitute a way of writing certain so-called incomplete Hangul
syllables, representations that are confusable with using Hangul jamos and Hangul jamo
fillers. To prevent spoofing, certain representation should be rendered properly, while other
(not canonically equivalent) representations of exactly the same Hangul syllable should be
rendered in a blotted out fashion to indicate that that representation, if rendered properly,
would look just like the same syllable represented differently.

One needs to draw a line between what to render properly and what to render blotted
out. A decision for the Unicode standard should be made for which representations are ok
for rendering and for security sensitive applications, and which are not, so that all
implementations can draw the line in the same way. We will here look into some
alternatives for how to draw that line (for the Unicode standard, not for individual
implementations to decide differently).

It is not quite clear if using the jamo filler characters is in principle confusable with
using the Hangul compatibility letters. Is, for instance, <U+1100, U+1160> in principle
confusable with U+3131? It is conceivable that <U+1100, U+1160> is intended to be
displayed differently from U+3131. But below, it is assumed that they are confusable and
that the U+ 3131 representation is preferred (since it is prevalent) and the other should be
blocked as a possible spoof. The half-width Hangul letters are assumed to be
distinguishable from the full-width ones.

To make it easy to refer to full-width compatibility Hangul letters below, the Hangul
letters are given "<free>" (for free-standing) decompositions (instead of <compat>
decomposition mappings) in the datafile AuxiliaryHangulDecompositions.txt.

Using Hangul syllables with the sequence <U+115F, U+1160> (<CHOSEONG FILLER,
JUNGSEONG FILLER>), or syllables which should have that sequence (containing just trail
consonants), should be regarded as a possible spoof and should get a blotted out display,
as well as any extraneous jamo fillers (e.g. multiple fillers, or fillers inside of a choseong
sequence (except for a special case between a non-IEUNG and IEUNG) or inside a
jungseong sequence). Thus the following cases should result in a blotted out glyph, or just
plain rejection, for the Hangul syllable (where choseong includes the choseong filler and
jungseong includes the jungseong filler):

• <U+115F, U+1160> in the syllable,
• <choseong, U+115F> or <U+115F, choseong> in the syllable, except for <non-ieung

and non-filler choseong, U+115F, HANGUL CHOSEONG IEUNG> (for preventing the
IEUNG to be displayed below the preceding choseong or double choseong),

• <jungseong, U+1160> or <U+1160, jungseong> in the syllable,
• more cases that should result in blotting out, or just plain rejection, are given below.

Let "syll" stand for a (not necessarily well-formed) Hangul syllable (maximal non-empty
substring fulfilling L* V* T*, L* LV V* T*, or L* LVT T*).

Note that a syll shallshallshallshall be displayed as a singlesinglesinglesingle syllable block. Dividing it up into several
syllable blocks would be an error, and doing so would indeed be a security issue.

 13

In each of the following alternatives, if syll (in its entirety) is canonically equivalent to a
precomposed Hangul syllable, that representation is ok, and should be displayed using the
font's glyph for that precomposed Hangul syllable. Other ok syll:s need jamo glyph
composition, and not ok syll:s should get a blotted out display as a possible spoof
combination of characters.

Note that Unicode so far has had no recommendation for which combinations of
Hangul jamos are ok, except to say that Hangul syllables, however constructed, are to be
displayed in a single block and define the boundaries of syllables in a character sequence.
No word on which among several logically equivalent (but not canonically equivalent)
representations to use.

Here are some possible alternatives for the standard; they are notnotnotnot implementer’s choices:

Alternative 1.Alternative 1.Alternative 1.Alternative 1. Compute (a) NFC-Hangul(syll), and compute (b) NFC(syll).

If (a) and (b) have the same sequence of code points and that sequence of code
points is not the same as the NFKC-Hangul of any of the Hangul characters with a
<free> decomposition, and it does not misuse jamo fillers (see above), then the syll
may be ok. Otherwise: treat the syll as a possible spoof (blotted out display or
otherwise blocked).

This alternative prefers using multi-letter jamos whenever possible. While it "allows"
use of all already allocated multi-letter jamos, it is also for that reason very clumsy.

Alternative 2.Alternative 2.Alternative 2.Alternative 2. Compute (a) NFD-Hangul(syll) plus do auxiliary compose to characters
named in Jamo.txt (i.e., other auxiliary compositions excluded), and compute (b)
NFD(syll).

If (a) and (b) have the same sequence of code points and that sequence of code
points is not the same as the NFKD-Hangul plus auxiliary composition to
characters named in Jamo.txt of any of the Hangul characters with a <free>
decomposition, and it does not misuse jamo fillers (see above), then the syll may
be ok. Otherwise: treat the syll as a possible spoof (e.g. blotted out display or
otherwise blocked).

This alternative prefers using single-letter jamos, except for those that can occur in
precomposed Hangul syllable characters. It is slightly clumsy since it can leave
certain multi-letter jamos outside of precomposed Hangul syllable characters in
NFC.

Alternative 3.Alternative 3.Alternative 3.Alternative 3. Compute (a) NFC-Hangul(syll) plus do auxiliary decompose for jamo
characters (without decomposing the precomposed Hangul syllable characters),
and compute (b) NFC(syll).

If (a) and (b) have the same sequence of code points and that sequence of code
points is not the same as the NFKC-Hangul of any of the Hangul characters with a
<free> decomposition, and it does not misuse jamo fillers (see above), then the syll
may be ok. Otherwise: treat the syll as a possible spoof (blotted out display or
otherwise blocked).

This alternative prefers using single-letter jamos, except for those that actually
occur in a precomposable Hangul sub-syllable.

 14

Alternative 4.Alternative 4.Alternative 4.Alternative 4. Compute (a) NFC-Hangul(syll) and (b) NFC(syll); but if that leaves any
jamos in the representation of (a): recompute to get (a) NFD-Hangul(syll) and (b)
NFD(syll).

If (a) and (b) have the same sequence of code points and that sequence of code
points is not the same as the NFKC-Hangul (if there is no recomputation) or NFKD-
Hangul (if there is recomputation) of any of the Hangul characters with a <free>
decomposition, and it does not misuse jamo fillers (see above), then the syll may
be ok. Otherwise: treat the syll as a possible spoof (blotted out display or otherwise
blocked).

This alternative prefers using single-letter jamos, except for those that actually
occur in a precomposable (and here precomposed) full Hangul syllable. This is the
most elegant alternative, while still allowing for the prevalent use of precomposed
Hangul syllable characters as well as HANGUL LETTERs.

TheTheTheThe last alternative last alternative last alternative last alternative (4) (4) (4) (4) is the alternative preferred by the author.is the alternative preferred by the author.is the alternative preferred by the author.is the alternative preferred by the author. It is elegant in that it
uses precomposed Hangul syllables or Hangul compatibility letters whenever possible, but
only for full syllables that can be represented that way, and otherwise uses just single-
letter jamos). There is a technical implementation feasibility reason given below.

There are some additional requirements for proper display in a syllable block:
• at most three lead consonant letters

- displayed to the left of eachother, however,
- note that a ieung is displayed below the preceding lead letter or doubled lead

letter (yesieung has no such special behaviour, note also that yesieung
should have a clear stem on top)

• at most four vowel letters, out of which
- the first ones are at most two horizontal vowel letters (displayed below each

other, as well as below any lead consonants), followed by
- at most two vertical vowel letters (displayed to the left of the preceding vowel

letters as well as to the left of lead consonants), followed by
- at most two horizontal vowel letters (displayed below all the preceding vowel

letters), however,
- note that araea is counted as a horizontal vowel, except after another araea

• at most four trail consonant letters
- all displayed below all preceeding characters in the syllable, however,
- note that a ieung is displayed below the preceding trail letter or doubled trail

letter (yesieung has no such special behaviour, note also that yesieung
should have a clear stem on top)

Other combinations, mostly too many letters of the same kind together, should lead to
blotted out display (at least partially, since that will almost be the effect anyway of having
too many (shrunk) letter glyphs in too small space. Note that each Hangul jamo may need
up to (depending on font) about 15 or so glyph variants, to fit in different positions in a
syllable block.

 15

Note that these additional requirements are practical to implement only for spoof
prevention alternative 4 above. Though of course possible for the other alternatives too, it
then becomes far too unwieldy complicated and unreliable in implementation. Recall also
that the letters of a Hangul syllable must be displayed in a single syllable block. Otherwise
there is another possibility for spoofing. This speaks strongly for alternative 4.

6 Acknowledgements

Many thanks to Jungshik Shin for untangling my misunderstandings about Hangul, and for
comments on earlier drafts of this Unicode technical note. Dae Hyuk Ahn, Ienup Sung, and
Mark Davis have also provided me with comments on Hangul decomposition. Any
remaining errors in the above text are of course mine.

7 References
[1] Han'gŭl matchumpŏp (The hangŭl spelling conventions), Ministry of Education,

Mun'gyobu, Seoul, 1988. (Reference from Jungshik Shin.)
[2] Han'gŭl match'umpŏp t'ongi'iran (A proposition for unified han'gŭl spelling

conventions), Chosŏnŏ Hakhoe (Korean Language Association), Seoul, 1933.
(Reference from Jungshik Shin. There may possibly be different versions of this
document.)

[3] Kaejŏnghan Chosŏnmal kyubŏmjip (A revised collection of Korean language
norms), Kugŏ sajŏng wiwonhoe (Korean Language Assessment Committee),
Sahoegwahak Ch'ulp'ansa, P'yŏng'yang, 1988. (Reference from Jungshik Shin.)

[4] The Korean Alphabet, its history and structure, ed. Young-Key Kim-Renaud,
University of Hawai'i Press, 1997, ISBN 0-824-81989-6.

[5] The Korean Language, Ho-Min Sohn, Cambridge University Press, 1999, ISBN
0-521-36123-0 or 0-521-36943-6. (Section 6.3 gives a translation to English of
the 1444 design document for the Hangul alphabet.)

[6] Hangul, Korea background series, Korean overseas information service, Seoul,
Korea, 1973.

[7] Ordering Rules for Hangul – CTT suggestion, Kent Karlsson, 2004, ISO/IEC
JTC1/SC2/WG2, N2715, 2004-03-09,
http://std.dkuug.dk/JTC1/SC2/WG2/docs/n2715.doc.

[8] The Korean alphabet of 1446 – Expositions, OPA, The visible speech sounds,
Annotated translation, Future applicability; Hwun Min Ceng Um, Sek Yen Kim-
Cho, Humanity Books and AC Press, New York, 2002, ISBN 89-428-1587-1.
(Reproduces, translates and analyses (in English) the 1446 official design
document for the Hangul alphabet.)

[9] A history of Korean Alphabet and Movable Types, Ministry of Culture and
Information, Republic of Korea, 1970. (Part 1 reproduces the 1444 official design
document for the Hangul alphabet.)

[10] The Korean Language, Structure, use and context, Jae Jung Song, 2005, ISBN
0-415-32802-0.

