
ISO/IEC JTC1/SC2/WG2 N2141
1999-12-01

Universal Multiple-Octet Coded Character Set
International Organization for Standardization
Organisation Internationale de Normalisation

�åæäóíàðîäíàß îðãàíèçàöèß ïî ñòàíäàðòèçàöèè

Doc Type: Working Group Document
Title: On the need for a ZERO-WIDTH LIGATOR

Source: Michael Everson
Status: Expert Contribution
Date: 1999-12-01

Recently Mark Davis took up again (on the UNICORE@UNICODE.ORG discussion list) the
question which had been discussed and dropped a little while back. Since I appear to
have invented the unfortunate term GLUER, I hereby withdraw it, and have globally
replaced it with LIGATOR in all the texts cited below, as it is more accurate. Mark cited Rick
McGowan:

I always start with the assumption that ligatures, except in extremely rare cases that are
dictated by the writing system itself, are optional.

I would beg to diÀer. For most languages, Latin Þ and ß ligatures are not optional in good
typography (Turkish and Azerbaijani require a distinction to be made between fi and fõ
but presumably permit ß ligatures.). Those are the most common ones; the other f-
ligatures, e.g. Ñ and Ò ligatures, etc. are also found in good Latin typography and should
be applied where appropriate. One may question the notion of good typography. To that
I say: it is only relatively recently that technology like typewriters and dot matrix printers
and 8-bit glyph limited fonts have forced bad typography on us, and it is only thence that
the notion that the f-ligatures are optional has arisen.

The default behavior in many environments should be to not use ligatures. They should
be applied as a typographical device used to make text look nice or ßow in a particular
way during a layout and page design process, not during the drafting of the text itself,
and so forth.

Rick, you may have that assumption, but it simply doesnÕt match reality. People want to turn
on normal ligatures such as Þ globally, then correct the very few instances (if any) that donÕt
work properly. They donÕt want to have to manually scan through every possible place that
ligatures could occur and do some special action.

In general, this is true. But to eÀect such an option, the text has to be coded somehow at
input, whether by hypertext markup, or (as advocated here) by plain text encoding.

This is the same as automatic hyphenation. You want to turn on hyphenation globally, then
correct the few instances where it doesnÕt work manually. 

I never do this. I always prefer to avoid hyphenating words and to manually apply
hyphens only when the white space looks too big to my eye. I donÕt trust the algorithms,
as they have no eye for what is best.

For that matter, this is also true for BIDI; the implicit algorithm should work Þne the vast
majority of the time, but you need manual controls to Þx the few cases that donÕt.

Page 1



True. But this is a diÀerent question from how to store the information in a document.
We need a LIGATOR that can easily be used to specify to Latin ligatures and other European
script ligatures alike. But here is where it begins to get contentious. Lloyd Anderson wrote
in response to Mark some things with which I disagree mightily, although Lloyd and I
seem to agree in principle on the utility of a ZERO-WIDTH LIGATOR. He said:

Ligatures are indeed automatic in many contexts of interest to us, that is to say, writers/readers
want them to be automatic, to not have to specify them individually. Only the abnormal cases
call for manual overrides.

But the manual overrrides may be ÒOh, donÕt ligate here because it crosses a word
boundaryÓ (the hypothetical *chafffinch must be typeset chaÐÞnch [cha(À)(Þ)nch] not
chafÑnch [cha(f)(Á)nch]), or ÒPlease ligate this Runic pair even though itÕs very rare.Ó
The point is that the encoding should carry this information, however it is input and/or
deleted.

Perhaps I have misunderstood, but I think a global setting has always been RickÕs position, and
he took it so for granted that he was only expressing opinions on how to handle the abnormal
cases.

Either way, a reliable and predictable and interchangeable means for specifying ligatures
is required. Arabic always ligates unless the ZERO-WIDTH JOINER or ZERO-WIDTH NON-JOINER

intervenes. Devanagari always ligates when VIRAMA causes the ligation, unless the ZERO-
WIDTH JOINER or ZERO-WIDTH NON-JOINER intervenes. But for European scripts we have
nothing speciÞed but that either the font or the application should handle itÉ somehow.

ÒBut lo!Ó sayeth the user, Òthere is block FB. We can use whatÕs there! Except look, itÕs
missing dozens of ligatures, so weÕll have to add all of them, now whereÕs that listÉÓ 

One cannot have it both ways. Either we have a stable and productive and interchange-
able method for ligating Latin and other European scripts, or requests for additional
ligature characters in the UCS will continue to be put forward. A safe and reliable
mechanism for specifying ligatures is a requirement both of the font designer and of the
end user. The text is no more burdened by a ZERO-WIDTH LIGATOR than it is by a SOFT HYPHEN,
and the relation of character-sequence to font glyph is analogous to that which we
already have with combining character sequences.

(I think RickÕs position was questioned by Asmus pointing out that we want plaintext to handle
this kind of thing, so do need a local in-text method of handling unpredictable cases, other
than applying a scoped formatting. Such a critique presupposes that the general case is a
global setting, whether formatting (Rick?) or built into the font defaults.)

This presupposition is part of the problem, and anyway it appears to me to be input-
related, not encoding-related. The problem is that the presupposed general case doesnÕt
work for all European scripts.

But there are also other contexts where there is no plausible automatic rule, where the choice
is indeed completely local. These are the ones which have been highlighted by Everson, from
Runes and similar cases. Neither kind of global setting works here with any plausibility, that is,
neither a global formatting default nor a default built into the fonts. We need to specify the
ligatures as if we were specifying separate characters in these cases (for which experience with

Page 2



the automaticity of Þ or Arabic or Devanagari are not directly relevant), simply because the
occurrences are entirely local, not predictable in any automatic way.

The encoding for ligatures of any kind, and for any script, whether Latin, Runic, or Greek
(or other particular scripts to be speciÞed), should use a ZERO-WIDTH LIGATOR in every case,
whether certain inputting settings insert it automatically in some of those cases or not.
And Lloyd is wrong; ß may be universally automatic in Latin, but Þ is not, as in the case
of Turkish and Azerbaijani. It is not the application of any particular ligature which is the
question. All ligatures in Devanagari are speciÞed in the same way: by use of the VIRAMA.

So we need a LIGATOR to do that in these cases, its use should be deprecated in those cases where
users want the ligatures to be handled automatically.

No! Ligation is a generalizable behaviour. Treating all ligatures the same way is the only
logical and interchangeable thing to do. An Ý ligature is no diÀerent from an Þ ligature,
even though the latter is far more common.

It is perhaps our use of the term ÒligatureÓ for both kinds of cases, undiÀerentiated, which

leads some to think we should handle all of them the same way. 

Of course we should handle all of the same way, just as all Devanatari ligatures are
handled in the same way. Ligature availability is a matter for the font (a font either has
the glyph or it doesnÕt). There is no Þ ligature in the Gaelic variant of the Latin script: for
the sequence fi, the i has no dot and the f does not overhang it. A text which encodes the
sequence as F + LIGATOR + I but which has no font ligature will just display fi. Ligature
presentation however, should be speciÞed in plain text by ZERO-WIDTH LIGATOR. Otherwise
they should (for European scripts) remain latent.

They are diÀerent phenomena, so we should not be surprised if diÀerent mechanisms are

appropriate. A global setting will not work at all for the Runic ligatures case. RickÕs formatting
of strings of text will work, but is rather laborious, and as I understood Asmus to be pointing
out, is not plaintext and we want to be able to represent normal Runic text (just for one
example) in plaintext.

And to represent Latin, and Cyrillic, if, for example, Ï (used in Moksha earlier this
century) is to be considered a ligature of p and x and not a character as in ISO 10754.
(NOTE: Printed Cyrillic almost never makes use of ligatures if the font style isnÕt Old Church
Slavonic. I do not believe that Ï is a ligature, but rather a letter like ¾ (used in Ossetian).
ISO 10754 encoded Ï and Î as characters, and these should in my view be encoded as
characters in the UCS. In any case there are plenty of ligatures in OCS printing.]

So we need a LIGATOR to do that. The non-ligatured forms are the default in Runic, I believe, and
the ligatures need to be individually speciÞed when required, by entering a LIGATOR code into
the text stream at just those places, and by having triples of A + LIGATOR + C in the fonts for any
such ligatures supported by the fonts.

Such triplets are necessary for all such ligations. Also quadruplets can be taken into
account: LATIN SMALL LETTER F + LIGATOR + LATIN SMALL LETTER I + COMBINING GRAVE ACCENT must
yield Õ not Þ̀. Costs? Technologies like ATSUI (as yet unimplemented for most fonts) may
have to be altered slightly to use ligature triplets, and globally turning ligatures on or oÀ
would be some sort of global search and replace operation. This may diÀer from how

Page 3



ATSUI deals with it now, though ATSUI does interact with character strings (such as base
and combining characters), and so it is probably not very costly even if it does imply a
change. The point is even if ATSUI can turn ligatures on or oÀ at one or more levels, this
doesnÕt work in a generalizable way.

¤ ¤ ¤

All of the above was a response to an earlier summary and discussion which I submitted
on 1999-11-07. I reproduce it here, with a few augmentations. Lloyd said:

As I understand it, at least many years ago, the opposition to a ÒLIGATORÓ was present at the
same time that Joe BeckerÕs very sophisticated and precise deÞnition of the functioning of the
ZERO-WIDTH JOINER and ZERO-WIDTH NON-JOINER were being presented (which I happily admit I did
not understand at Þrst, but strongly supported once I did).

Chapter 13 of Unicode still proscribes the use of ZERO-WIDTH JOINER for scripts like Latin.

BeckerÕs point was that both of these interrupted the ßow of other codes, causing codes which

would have been adjacent to be not-adjacent. The ZERO-WIDTH JOINER also would separate

adjacent characters, but it would have the special cursively linking character property, so
characters adjacent to it would take their cursively linking forms on the sides adjacent to it, if
they had any.

For scripts like Arabic, Syriac, or Mongolian, which are inherently cursive, it makes very
good sense. So its proscription for Latin is probably quite sensible Ð except for the
peculiar references in the Unicode Standard to Òcursive fontsÓ; see below.

Now the LIGATOR is diÀerent. While it also separates any characters which it occurs between

(obviously), it is desired that inserting this character should cause the two adjacent characters
to form a ligature together. 

Such a ligature is displayed if the ligature is available in the font. Note that we also have
three script-speciÞc modiÞers for Mongolian which cause speciÞc glyph selection. The
ZERO-WIDTH LIGATOR should also be script-speciÞc Ð though it may apply to more than one
script in the UCS (not Katakana or Egyptian Hieroglyphs, for instance) it should not be
applied to all of them.

If the LIGATOR is to be simply another text character, then for it to work, smart fonts must
include listed triples of characters A + LIGATOR + C and the single glyphs which are to be
substituted for such triples.

ThatÕs right. And quadruplets as noted above. Rick McGowan wrote:

NeXTStep implemented this concept several years ago; it was handled by the glyph-producing
code for speciÞc fonts under Display PostScript. It works just Þne. The text editor has 3 menu
items which can be applied to the current selection. The ligature level is stored as a numeric
attribute over a run of text. The default choices were Òno-ligaturesÓ (i.e., only absolutely
required ligatures like LAM-ALEF), Òstandard ligaturesÓ (like Þ/ß ) and Òall possible ligaturesÓ.

Page 4



Three menu items is not by any means a suÁcient number of categories for specialized
needs, though it is OK for some fun calligraphic fonts (usually used as examples of how
the Display PostScript (etc.) technology works). But typographical ligatures like Þ/ß are
part of the ordinary behaviour of fonts like Times. And what happens to interchange-
ability if e.g. ATSUI (the QuickTime GX analogue or descendent of the NeXTStep
implementation, I suppose) is not implemented in a given environment?

Since it was speciÞable over a range, you could use it to do optionally fancy ligatures in certain
places within a document. It could also be programmatically manipulated by applications for
specialized typographical purposes and so forth.

This is impractical for nonce-ligatures, and all the work the user has done to format such
runs of text is lost when the document is converted to plain text.

There was no need for a LIGATOR character in this scheme. This is a good example of using ÒrichÓ

or ÒattributedÓ text to get a reasonable eÀect thatÕs not appropriate for plain text.

Why is the use of encoded ligation appropriate for some scripts and not for others? The
point is that the Òreasonable eÀectÓ Rick refers to is not comprehensive enough and that
plain text representation is preferable. In Arabic, Devanagari, and Mongolian, ligatures
are treated in explicit if diÀering ways. For Latin and Runic and the rest we have no
mechanism. Why? There are even nonce ligatures in Scottish Ogham inscriptions Ð but no
means of representing them in UCS encoding.

John Fiscella wrote:

I personally would not like ligature selection/management mechanisms built into Òsmart
fonts.Ó 

I am not quite sure what exactly John means here by Òbuilt intoÓ, but the discussion
below may clarify things. I suspect that John agrees with my analysis and that he would
like the encoding to specify ligature behaviour.

All the ramiÞcations of the mechanism may not be aware to the originator at the time of
creation. (The old slogan: ÒComputers are dumber than people but smarter than program-
mers.Ó) Can an end-user reprogram the ligature management mechanism in a font if it turns
out to have an unintended nasty consequence?

The end-user probably cannot. But he or she can choose to insert or delete a ZERO-WIDTH

LIGATOR. An Òunintended nasty consequenceÓ could, for instance, make a font unusable
for Turkish or Azerbaijani Ð a problem avoided by the use or non-use of ZERO-WIDTH

LIGATOR.

I know that AppleÕs ATSUI has some sexy features (like you could build into your
Chancery font a way of preventing the user from using it in »½½ ¼»¾¿). But many of
those kinds of typographical features are just for fun. Ligation in Latin script is a serious
concern of mine, especially because of my work on early Gaelic typefaces, which make a
much greater use of manuscript ligatures than nearly any Roman typeface did. Early
Greek typefaces did likewise. 

Page 5



I consider typographic Latin ligatures to be quite analogous to combining characters. In
the font, I need only design a single LATIN SMALL LETTER E, for instance, and I can use
internal linking tables to paste its glyph into glyph cells which it shares with correctly-
placed accent marks (also pasted in from elsewhere in the font, usually linking them to
strings of UCS characters). I can do this even now, with Fontographer. At present,
because my Unicode capability remains limited, I havenÕt experimented with linking
glyph cells to strings of UCS characters (i.e. Û LATIN SMALL LETTER E + COMBINING TILDE BELOW)
but I know that there are font tables that can do this.

These tables are really nice, because since combining characters are highly productive, it
means that while most fonts may only handle a standard set of (Western and Eastern
European) vowels and consonants combined with accents into dedicated glyph cells,
designers like John and Lloyd and I could make way-cool fonts that could handle all the
letters used in indigenous American languages, African languages, phonetic fonts with all
sorts of tones and aspirations, and so on. The character string LATIN SMALL LETTER E +
COMBINING TILDE + COMBINING ACUTE ACCENT + COMBINING TILDE BELOW (nasalized high-tone
creaky-voice e) mightnÕt look well in a bog-standard Times font which doesnÕt have such
special glyphs, but the same could look quite nice in Utopia Amerind Italic: Ü.

This shows a way we have of relating font technology with character strings. It works
great, or will do so, when the technology catches up. And this way of specifying glyph
relations to strings of UCS characters works in plain text.

Now letÕs think about ligatures in Latin. Mac Roman fonts have had Þ/ß ligatures from the
beginning. Some Mac applications know about them. Quark XPress, for instance, lets you
turn them on or oÀ. I always have them turned oÀ because I also use Mac Gaelic and Mac
Icelandic fonts quite regularly and Quark, since it thinks all non-WorldScript fonts are
Mac Roman, performs unwanted substitutions (Þ or ß for Þ ) if the feature is enabled. (And
no, the end-user canÕt Þx it.) I have not tried to determine how Quark represents this in
coded text, but I assume it is done by markup as QuarkÕs italic is. (That would be what
Rick suggests anyway.) But style markup can be misleading. For instance, if you use the
ALL CAPS style, your text may display in all caps, but still be encoded as lower-case
characters. So marked-up plain text may be diÀerent from WYSYWIG even in a context
one wouldnÕt expect.

Asmus Freytag wrote:

The kind of scheme put forth by Rick fails badly for many languages, where the availability of
ligatures is not determined by the character codes in context, but also by the meaning
expressed by these characters. Ligatures are typically disallowed across certain morpheme
boundaries in the middle of composite words.

ThatÕs right. It also fails for languages where ligatures are rare or uncommon and no rules
whatsoever apply. One could deal with German or Estonian or Danish Fraktur ligatures
algorithmically with dictionary lookup if necessary. One cannot do so with Runic or Old
Hungarian, because standard orthography does not exist for the language corpora they
are used for and it would be pointless to try to create such dictionary lookup tools.

The absence of a cheap clean override for automatic ligation is the single biggest reason for the
pressure behind the Latin ligatures in Unicode.

Page 6



Yes. Asmus is right. Rick McGowan disagreed:

No, you misunderstand completely. First, the availability of ligatures is determined by the
designer of the font and the implementor of the particular font Þle.

Yes, but the repertoire of possible, acceptable, or nonce ligatures is external to the font
designerÕs implementation in many cases. He or she needs to get his or her tables from
somewhere else; such repertoires of ligatures have an independent existence in most
cases (the Runic corpus, for instance).

The usage of ligatures is determined and modiÞed by the creator of the text, obviously with
some particular [linguistic] context in mind.

E.g., in using this system for a German-speaking environment you would just turn oÀ ligatures

normally by default, so that you donÕt get the ÒfffÓ problem and so forth; and then if you want
a ligature some place, select the text and turn on ligatures, at an appropriate level, for that bit
of text.

The problem is that an unnecessary burden is placed on the user in such an instance. Not
all languages use ligatures in the same ways at the same time or in the same measure.
WeÕve been focussing on the Latin script typography, but the use of typographic ligatures
in Greek, Cyrillic, and Armenian is just as dependent on period.

We are all familiar with the huge number of ligatures used in handwritten manuscripts,
and in general these are expanded in italics by editors. And in general, Roman Latin
typography does not make use of an enormous number of ligatures. But Gaelic Latin
typography and Greek typography did employ a very large number of ligatures in metal
type from the time of the very Þrst printed works. As time went on, use of ligatures was
reduced, but not systematically. Some fonts had many ligatures, some had few. It is not
at all practical to use a markup system to try to deal with diÀerent levels of ligature
behaviour because there are too many of these for users or font designers to learn. A
three-fold or Þve-fold hierarchy wonÕt give the right behaviours; I have two bibles printed
in WattsÕ 1818 Gaelic font (revived by myself as Acaill and used for Gaelic examples in this
document), one which uses all the ligatures, one that uses only some of them. Other texts
using the font employ no ligatures at all.

What I want to see as a font designer and end-user is a character very much like the SOFT

HYPHEN. The SOFT HYPHEN character can appear peppered throughout a text and is ignored
unless a break occurs at the end of a line. If we had a LIGATOR, this could also be ignored
unless the font had glyphs (as Lloyd described) which were composed of the sequence
e.g. F + LIGATOR + L. 

This isnÕt just for representation of old printed texts. Ligatures like Þ/ß are common; but
Ó ligatures are needed in modern Irish (Roman face) typography because Ó is a very
common string in Irish (it represents phonetic Í; cf. Latin fabulare > Spanish hablar). I
donÕt know of a single font that has this ligature, probably because the string Ó is
uncommon in most Latin-script languages. If Þ/ß ligatures were coded as F + LIGATOR + I

and F + LIGATOR + L then the font will display them if the ligature exists in the fontÕs glyph
tables (linked to the character triplet sequence), and simply display as F + I and F + L if not.
If F + LIGATOR + H occurs, the same thing will happen. Inputting with ligating turned on
could insert the LIGATOR algorithmically, perhaps according to a user-editable table (cf. Ø

Page 7



but fi and fõ in Turkish and Azerbaijani). But even if an application didnÕt know about Ó,
then the user could insert the LIGATOR manually or globally after writing his or her text. Not
dissimilar to SOFT HYPHEN implementations currently available.

The point is that coding the LIGATOR would be more advantageous than unstandardized
markup, because the ligatures would be speciÞed in plain text. It would do no harm for
fonts without ligatures, but would be noticed by any font with glyph tables that contained
the triplets (just as they do for accented vowels).

Common ligatures in Gaelic fonts: à air, á ar, â ea, ã � (= nn), ä rr, å ui, æ �i.
Less common ligatures in Gaelic fonts: è gur, é li, ê ll, ó nea, ë s÷ (= cút), ì sd, í sg, î si,
ï sn, ð so, ñ st, ò tt (and there are many more).

Lee Collins cited me with a comment:

In Runic and Old Hungarian they are not Òtypographical devicesÓ, they are historical
nonce-forms or more-than-nonce-forms which are nonetheless non-obligatory (in the
way that ligatures are in Devanagari and Arabic).

Whoa! KSA, TRA, and JNA are all obligatory ligatures in Devanagari. They even appear in the
var.n.amula (alphabet charts). But both ISCII and Unicode happily and successfully treat them
as ligatures. How are the Runic and Old Hungarian cases diÀerent?

I meant Òin the way that ligatures are obligatory in Devanagari and ArabicÓ. ISCII and
Unicode rightly treat all Devanagari conjuncts as ligatures. They make use of VIRAMA to
produce them (by using the triplet TA + VIRAMA + RA to yield TRA in the glyph tables) coded
in plain text. In Arabic, ligatures just happen (also by reference to strings in glyph tables)
but they can be prevented with ZERO-WIDTH NON-JOINER and forced with ZERO-WIDTH JOINER.
In Latin, we have no such mechanism. Unicode 3.0 chapter 13 states for Arabic: ÒBy
providing a non-joining neighbor character [irrelevant for Latin] where otherwise the
neighbor would be joining, or vice-versa [relevant for Latin], they deceive the rendering
process into selecting a diÀerent joining glyph.Ó 

Also: Ò[A]ny number of ZERO-WIDTH NON-JOINER or ZERO-WIDTH JOINER characters sprinkled
into an English text string will have no eÀect on its appearance when rendered in a typical
non-cursive Latin font.Ó Does this mean that these characters will eÀect a cursive Latin
font? How is a Latin font supposed to announce to the application or rendering engine
that it is ÒcursiveÓ? What if one has a non-cursive Arabic font? (There were experiments.)
How is such a font to be identiÞed?

Also: ÒUsage of optional ligatures such as Þ is not currently controlled by any codes
within the Unicode standard but is determined by protocols or resources external to the
text sequenceÉ.Ó

Why this restriction is imposed on Latin (Greek, Armenian, Cyrillic, etc.) non-cursive
fonts? Typographical ligatures are of primary interest to non-cursive Latin fonts, and
cursive Latin fonts are relatively rarely used.

The situation for Runic and Old Hungarian is that the normal representation is without
ligatures, but (many) documents occur in which two or more of the letters are ligated. For
a Runic text containing 50 Ë~ URUZ + NAUDIZ sequences, two of them might be ligated Ì.

Page 8



Ligatures in such texts occur for reasons of saving space in the inscription, or at the after-
thought (i.e. correction) or whim of the scribe. There is no pattern that can be used to
deÞne algorithmically such ligation since it is nonce or semi-nonce, and is not restricted
to single texts.

Since ZERO-WIDTH JOINER and ZERO-WIDTH NON-JOINER are proscribed for forcing Latin, Runic,
or Old Hungarian ligatures. Since these cannot be used, then we need ZERO-WIDTH LIGATOR,
because ligature behaviour in European scripts is as important as it is in Brahmic or
Arabic scripts (or at least is a valid user-requirement). WeÕve just added three glyph
modiÞers for Mongolian. We need only one for European scripts.

Ligation should not be considered a stylistic feature in European scripts if it is considered a
plain-text feature in other scripts.

Asmus Freytag wrote:

In addition, intra-word markup is really a poor design. Experience has shown that it regularly
interferes with non-layout text processing, whereas single character override functions such as
SOFT HYPHEN, ZERO-WIDTH JOINER, ZERO-WIDTH NON-JOINER and ZERO-WIDTH NON-BREAK SPACE are a
well understood concept and all algorithms must be set up to handle them already. If we are
now in the middle of adding ZERO-WIDTH WORD JOINER or ZERO-WIDTH WORD SEPARATOR it would be
the right time to add the ligature related characters at the same time, to allow us all to get on
with life and give similar level concepts the same level of expression and a similar processing
model.

This will make implementation lots easier for the font developer and for the end-user and
even for the programmer. It seems to me that we need to add the ZERO-WIDTH LIGATOR, and
to prepare a UTR describing its nature of the and function.

Ligation is a normal if sometimes unpredictable feature in the following European
scripts: Armenian, Cyrillic, Greek, Ogham, Old Church Slavonic, Old Hungarian, Runic.
Advantage of encoding ZERO-WIDTH LIGATOR: easy support for ligation in all these scripts.
Disadvantage: Continued confusion for all these scripts and reliance on non-transferable
incompatible markup.

Page 9


