ISO/IEC JTC1/SC2/WG2 N2147
2000-01-06
Universal Multiple-Octet Coded Character Set
International Organization for Standardization
Organisation Internationale de Normalisation
MesknyHapoHasi Opranu3anysi o CTaHgapTH3alun

Doc Type: Working Group Document

Title: Further discussion of the ZERO-WIDTH LIGATOR
Source: Michael Everson

Status: Expert Contribution

Date: 2000-01-06

1. Structure of font styles. A given Latin typeface typically has a minimum of four fonts associated
with it: plain, italic, bold, bold italic. Each of these is a self-contained unit, containing in it all the
glyphs made available by the designer for the character set it handles.

Utopia AEIOU4¢éiouCcfifl
Utopia Italic AEIOUdéiou
Utopia < g — il
Utopia Bold AEIOUA&éiouCcfifl
Utopia Bold Italic AEIOUGéi6uCcfifl

Glyphs are accessed by various input methods: they are associated with coded characters entered
which often will have a many-to-one relationship with the glyphs which may be presented in
individual glyph cells. Glyphs are typically precomposed units, though mechanisms may exist for
dynamic presentation of character sequences which do not have, in the font, a particular
precomposed glyph; cf. phonetic fonts where bounding-box parameters may be used to represent
sequences of base characters and combining characters.

Precomposed ligatures in fonts and their respective typographic styles have existed since the time
of the earliest printed typefaces. The top two lines in the sample below (taken from Bringhurst’s
Elements of typographic style) are from an italic font cut in the 1650s (350 years ago) by Cristoffel
van Dijck, and the last bottom lines are ligatures from Adobe’s Caslon roman and italic, based on
William Caslon’s font from 1750 (250 years ago).

aw as hEE T A A fr
jisUq SE/DAJLR RN feus
EEzceelfiflfhMFEH
GstsEth Tt paff

2. Input methods to access characters. Various input methods may yield the same coded
character sequence: one may press the “a” key + the “ring above” deadkey, or one may press the
“4” key (on a Danish keyboard), or one may press ALT-“k” + the “a” key. In all three cases the
character sequence generated will be (in normalized Unicode text) LATIN SMALL LETTER A +
COMBINING RING ABOVE. This inputting model is the one currently used and it works just fine.
Inputting is separate from encoding but generates coded character sequences, and coded
character sequences are related to glyph selection. In most cases, since ¢ is a letter found in

Page 1

ISO/IEC 8859-1 (a popular standard), this particular character sequence will be linked to a
particular precomposed glyph cell in the font, which will have some sort of address. The specific
assignment of the address to which a coded character sequence points is up to the designer and
is in no way standardized or standardizable, since it is not practical to try to exhaustively specify
what sequences of base characters and combining characters could be required in general, and
the total requirements of a given language are only sometimes predictable.

3. Style selection. Style selection is much different than glyph selection. It des not involve not
choosing a glyph cell within a particular font, but rather switching between a set of linked fonts
(plain, italic, bold, bold italic) — such selection is outside the scope of character encoding and is
handled by markup of various kinds. Within a particular style, glyph selection should be based on
the relation given by the designer to glyph cells and a set of coded characters, alone or in
sequence. At present, however, within a particular style, only the accented-letter type is so
selected; ligatures are not.

NOTE: Most people use the word fontincorrectly. The hierarchy goes like this:

Typeface name:

Utopia

[\

Font style: || Font style: || Font style: || Font style:
Plain Italic Bold Bold Italic
GlyphI cells: GlyphI cells: GlyphI cells: GlyphI cells:
AaAdBb| AaAdBb||AaA4dBb||AaAdBb
CcCc¢Dd||CcC¢Dd||CcCeDd | CcC¢Dd
EeEéfifll EeFEéfifil EeEéfifll EeEéfifil
i06RUG||i0O6RUL|i06RUG|i068UU
YyZzetc.|| YyZzetc. | YyZzetc. | YyZzelc.

4. The current model as applied to Brahmic scripts. The same set of parameters described above
applies to Brahmic scripts, as in a Devanagari font. Inputting is separate from encoding but
generates coded character sequences, and coded character sequence is related to glyph selection.
One may press the “F” kakey + the “f::” i key, or the “f::” i key + the “&” kakey, and in either case
the character sequence generated will be DEVANAGARI LETTER KA + DEVANAGARI VOWEL SIGN 1, and that
sequence will select a glyph cell which gives T ki. Conjuncts (equivalent to ligatures) are
achieved by coded character sequences, regardless of inputting: a keyboard may have a dedicated
“Q” ksa key, and pressing it will yield the coded character sequence DEVANAGARI LETTER KA +
DEVANAGARI VIRAMA + DEVANAGARI LETTER SSA (% + < + W), and that sequence will select a single glyph
cell (9) in the font; or one can type explicitly pressing the “F” ka key, the “::” viRama key, and the
“O” sa key with the same result. At another level, markup may switch to an italic or bold font; this
form of switching is familiar and has been implemented for both Brahmic and European fonts.

5. The current model as applied to Arabic scripts. Arabic cursive shaping behaviour is intrinsic
to the script and glyph selection with regard to cursivity is rule-governed and must be automatic.
When this automatic behaviour must be overridden for some purpose, the ZERO-WIDTH JOINER and
ZERO-WIDTH NON-JOINER are used, as invisible characters with cursive shaping properties, to select
particular glyph cells according to the same parameters. This elegant model works very well for
Arabic and other related cursive scripts like Syriac and Mongolian, though a number of script-
specific characters were added for Mongolian to handle some otherwise unpredictable shaping
behaviour in plain text. For the question of true Arabic ligatures, see page 19 below.

Page 2

6. The current model as applied to European scripts. The current model fails in its handling of
ligation in European scripts. This is because, inconsistently with the mechanism used for
Brahmic scripts, certain individual glyph cells (ligature glyphs) in a font are not accessed by
strings of coded characters, but rather by “some sort” of markup, while other glyph cells
(accented vowels and consonants) are accessed by strings of coded characters. This is a different
model than that used for shifting between font styles via markup; it forces a relationship between
various undefined and ad-hoc markup levels (“turn on all ligatures”, “turn on ‘some’ ligatures”)
which itself introduces a level of complexity between font designers, application programmers,
and end users which is quite unsatisfactory. Quark XPress allows the Macintosh user to turn fi and
flligatures on or off, and this works from font to font because these two ligature pairs are hard-
coded in standard positions in Macintosh 8-bit fonts; but other ligatures are not recognized by
XPress at all (the inquisitive reader is invited to save the present PDF file as plain text to see what
I have had to do to represent all the f-ligatures which I have used consistently within it). The UCS
also encodes a very small subset of ligatures in the FB block, but I agree that it is better for the
vectoring from character sequence to glyph cell to be internal to the font, since this leads to fewer
normalizable characters and addresses the difference in typefaces, some of which may have a
great many ligatures and some which may have only a few.

7. Logic of the ZERO-WIDTH LIGATOR. The proposed zZErO-wWIDTH LIGATOR allows font designers,
programmers, and users to apply the same logic for ligatures that they apply to accented letters.
Like the SOFT HYPHEN, the ZERO-WIDTH LIGATOR character may in some instances (“all ligatures on”)
be automatically inserted at input. This would work fine for the most common Latin ligatures, i.e.
those in f-, or for a superset of those, involving ct and st ligatures and the like, available from an
application according to the same criteria employed by AAT and OpenType now. Other forms of
ligation, however, such as those required in the Gutenberg Bible, in modern Fraktur German, or
in earlier Irish and Greek typography (for which conventions may differ from document to
document even in the same typeface), can be dealt with at input by the user, or globally after
inputting, by specifying ZERO-WIDTH LIGATOR insertion, or by deletion of ZERO-WIDTH LIGATOR in the
case of Turkish and Azerbaijani fi (see page 6 below).

Glyph selection within a font (Utopia roman and Utopia italic are two different fonts) should not
be handled in two different ways. Selection of the glyph é derives from a vector-relation between
coded character sequence and glyph cell. Selection of the ligature ffi should make use of the same
mechanism. Ligation in European scripts is noft a style attribute. It is a glyph-selection attribute,
and style is a different level of abstraction. Unicode is currently inconsistent in the way it specifies
European ligatures and the way it specifies Brahmic ligatures.

Code Glyph

0065 0301 e+ é Latin

0915 093F F+fo o ki Devanagari
0066 zwL 006C f+zwL+i fi Latin

0915 094D 0937 F+i+T & ksa Devanagari
16DE zwL 16DE M+ zwr + X M dd Runic

168F zwL 168F M+ ZWL + W rr Ogham

xX0A ZWL xx00 A+ zwL + P R ga Old Hungarian
xx04 ZWL xx0D zZwWL xx15 N+zwL+ T+ zwL + € N csin Old Hungarian
xx00 ZWL xx14 ZWL xx02 P+ zwL + B + zwL + X XL amb Old Hungarian
03CO0 zwL 03B1 zwL 03C1 zwL 03B1 T + ZWL + O + ZWL + Q 4+ ZWL + Ol para Greek

0574 zZwL 0576 o +ZWL + I i mn Armenian

Page 3

8. Example of Runic ligatures (bind-runes). A 9th-century Old English inscription from
Thornhill, Yorkshire, showing a single MM dd ligature:

ITWN'p: FRERMM: FPTM BMRNTUN'PM- BMANT FHEMRXIXTTEIMED- PRR: MFNITM

jilsuip: arerde: efte berhtsuipe- bekun onbergigebiddabp- peer: saule

If this text were encoded with a ZERO-WIDTH LIGATOR, all the user would have to do is ensure that
ZERO-WIDTH LIGATOR appears between M and M (“&” is used here to show the ZERO-WIDTH LIGATOR):

ITUN'p: FRERMM: FPTIT BMRNTUN'DM- BITANT FHEMRXIXMEIM&NFP- PRR: MFNTT

If on the other hand there were no ZERO-WIDTH LIGATOR, but instead a ZERO-WIDTH NON-LIGATOR were
implemented to prevent ligatures where they were activated globally, this text would have to be
coded thus (“@” is used here to show the ZERO-WIDTH NON-LIGATOR):

ITUN'p: FRERMaM: Fal TH BMaRR2TUN'baM- BaM Azt FHEMaRXIXMzE MM b+ PRaR: UF 2N Tl

The 55-character text would have to be burdened with 14 ZERO-WIDTH NON-LIGATORS to override an
automatic ligation option; otherwise it would display with all the potential ligatures in this
particular font (note the XX dda triplet):

ITWN'h: FRERMT: #TM BIREUN'E- $1R PHEMRXIXTUMED- PR: UNTI
It should be noted that Runic ligation must be considered now to be productive; a web search on
“bind-runes” will lead to a large number of sites explaining how runes can be combined by the
modern user for various “magical” purposes. More serious, however, would be the use runo-
logists might make of sorting and searching bind-rune for statistical analyses, etc. — which
currently cannot be done effectively, as bind-runes can only be achieved at present either by
private-use characters or markup. Plain text character coding is certainly more reliable.

9. Examples of Gaelic typographic ligatures. Two identical texts (Luke 2: 8-14) from two different
publications using the same typeface but in which different ligature choices were made. One
might call this “ligature classment”. Both samples are from Uilliam O’Domhnuill’s translation of
the New Testament: the sample on the right was published in 1827 (173 years ago) in Dublin by
G. and J. Grierson and M. Keene for the British and Foreign Bible Society; the sample on the left
was published in 1849 (151 years ago) in Dublin by Hardy and Sons. Words containing
typographic ligatures are shown in outline style.

8 9 AUAzury oo bdoap doodirce ra o%hecte 1 N4
seoMnKoe amis, 7 43 oedandi) fape o01dce 4 4
oTpéno.

9 Azur, ¥éuc, oo fer amsel an Tisepna o léo,
4azur ©0 ToIlly1z 3lom an Tisennd na @cimcell: 7 oo
34b ezla mopn jao.

10 Azur 4 =ofbdc an cainzel i, N4 bjod eazla opyb:
om, réut, a4 cdim 43 rorrzéulujzad djb sdipoeciy mon,
no¢ bjay oo 34¢ wle pobal.

11 Ojp puzad an Sldnuscedin ddob a miz (Eador
Cpjoyo an Tizenna), 4 scasnns Dhdrby.

12 Azuy 43 ro coétjapta db; Do FZéubtdor an lenb
cednzrlce 4 13570bl%B, na 1%5e 4 marfyréup.

13 AUzuy oo b 30 Mobaff cryoetoda mop oo Tlidj
netdd 4 brocaim an amzil az molad DE, 7 4z ndd,
14 31611 00 Dhia 4ff rna hdponb, 7 riodcdm am an
otalaty), @e¢5c01l ©0 14 ©doINb.

8 9 Uzur oo bdoap dodd1de ra oWtte 1IN N4
sconyoe amuis, 7 47 o€andd fdame 0roce A 4
oTNéND.

9 Azur, reut, ©o fedr 41msel an Tieapna ldimh leo,
7 ©0 toilly1 3lom an Tizeapna na ocimcedll: 7 o0
34b eazla on 14o.

10 Azur 4 ofbdc an Tamzeal pu, Na bjod eazla opyb:
onm, reut, 4 Tdim 43 roryzeunluzad djb zdipoedaduy mon,
no¢ biar oo 3a¢ wle pobal.

11 “Om puzad an Sldnysceon ©4o1b a4 nug (Eadon
Cpjoro an Tigepnd), 4 scdenys Ddrb).

12 Azuy a3 ro cotapta dfb; Do Féabtaor an len®
cenzyloce 4 9510bl%E, ‘na 1Bse a4 maifyéup.

13 Azuy oo bj 30 Hoball cuoedtma Hmop oo Tlidj
neatipda 4 Brocd an amzil, a3 molad DEé, 7 a3 ndd,

14 3lom oo Dia afirnae hdponb, 7 riodedm am 4y
otalat), @¢3c011 ©0 14 °doInIb.

Page 4

To facilitate comparison, the texts are given below in Roman type with ligatures expanded, with
the words containing the expanded ligatures printed in outline style.

8 9 Agus do badar dodairide sa dUitée sin na
geémnuide amiig, 9 ag deanarh paire 6idce air a
dcréud.

9 Agus, réuc, do $eas aingeal an Tigearna laim I€o,
agus do $oillsig gldir an Tigearna na dciméeall: 7 do
gab eggla mor fad.

10 Agus a diibairc an caingeal rid, Na biod eagla oruib:
oir, réuc, a tdim ag soisgéulugad dib ghirdeatus mor,
noc bias do gac uile pobal.

11 Oir rugad an Slénuigcedir ddoib a nidg (éadon
Criosd an Tigearna), a gcacruig Dhaibi.

12 Agus ag so comarca dib; Do géubcdoi an leanb
ceangUilce a ngiobluiB, na lGige a mainnséur.

13 Agus do bi go hobann cuideacda mér do sliag
neamda a brocair an aingil ag molad Dé, = ag rad,
14 Gl6ir do Dhia ann sna hdrdui®, 7 siod¢din air an
dcalamh, deggcoil do na ddoinib.

8 9 Agus do badar dodairide sa ddicce sin ’na
gcomnuide amuig, 7 ag deanad raire 6idce air a
dcréud.

9 Agus, reu¢, do seas aingesl an Tigeana ldim léo,
agus do Soillsig gléir an Tigeana na dcimeedl: 7 do
gab eaggla mor fad.

10 Agus a diibairc an cainged rid, Na biod eagla oruib:
6ir, reuc¢, a tdim ag soisgéulugad dib gdirdeatus mor,
noc bias do gac uile pobal.

11 “Oir rugad an Sldnuigctedir ddoib a nidg (éadon
Criosd an Tigearna), a gcacruig D4ibi.

12 Agus ag so comarca dib; Do géubcdoi an leanh
ceangUilce a ngioblui®, na lGige a mainnséur.

13 Agus do bi go hobann cuidea¢da mér do sldag
neanda a brocair an aingil ag molad D¢, 7 ag rad,
14 Gl16ir do Dhia annsna hdrduib, 7 sfodcdin air an
dcalam, deagcoil do na ddoinib.

Although the same font is used for these examples, ligature behaviour is not the same for the two
texts, and indeed in the first text, eagla ‘fear’ is written both eazla (verse 9) and ezla (verse 10), and
air ‘on’ is written both 4 (verse 8) and ain (verse 14). The glyph selection is not rule-governed, and
it is impractical at best to suggest that the font designer, even though he or she is permitted to
specify various “classes” according to the AAT/OpenType model, should be able to specify all the
possible glyph-selection levels in a particular font, because the choice may differ greatly from
document to document. It is not as it is in English, where one might have simplistic choices like
“all fligatures”, “all f~ligatures and ct/st ligatures”, and “all available ligatures”. In scripts like
Runic, Ogham, and Old Hungarian, where nonce-ligatures often occur (and where there are also
examples like eazla/esl4), the ZERO-WIDTH NON-LIGATOR would be a serious nuisance.

There are also a few other minor spelling differences between the two texts: Oir ‘for’ is written Ojp
and “Om in verse 11; also ¢éu¢ and yeuc for féac; also Dhia/Dia for Dia. The specific O="0=0v
orthographic conventions used in a printed text may be of interest to researchers sorting or
searching — syntactic analyses of the word dir ‘for, because’ (French ‘car’) require that the
researcher knows that the spellings ‘oir and oir also apply. Note in verse 8 the word amuig
‘outside’ appears as amyz (with ligature, = amiiy3) and amujz. Implementation of ZERO-WIDTH
LIGATOR would code the first as amii&)3. Could researchers wish to distinguish amv;3/amiiis/amuiz
for some purpose? With ZERO-WIDTH LIGATOR, they would be able to do so, more simply than with
markup.

Jr coramuil nac nab aom deann
o0 na r5eultad ach jur oy leab-
A TO, clotbuajlce marm nojime.
Do ¢pumms a1 c-asTan ar beul
14 rean vaomesT 140. Jr rolléin
50 leop njac B-Fujl ceann aca af-
Tean, azur nac m-bameany Yja0
leh-a0ir Oirfn. Sj bapamugl an
A5TAIR 5UR cumat A cujoIr mo
208 cymceall ©A Ceud bljadan 6
Yo, a¢c Jr coramuil 30 B-rujl
cupo ojod monan njor Tmne.

_ Danhvedim yim cuard an Seofead ya vém ai) srazans 4
Por & yein jr Wante van d1c 4 34 v 4 beatuiad j. By
Tm veit mile prcéeas on 416 4 mbjad 1140 N4 3cotnars.
‘Da}mr T€ TON Traz4ant rm, 3up 1ms)3 Wane na Ruaipe .|
riubal uad, ra va blladam ovomm; 30 pard re '3 a4 oopus-
€4cT, 50 bruan amad j poroa a3 yean ejle, a 3convae 4y
Q)um; a3ur naé leizredd razapnt na papaIrce T o 4
¥a3anl, muna byujsedad re cputuzad yao) 4 latyran, sup lejy

Njan anur re an oavar ya bdr 2Whame ; asur m prab
FIOT 43 ah Trazamns vin wime, o ©'éuz mumzim Whajne
;;1”1 4 pOTa §, azur n1 nad mopdn jompad umse, van a1

On the left, a sample of text set in Watts type in 1845 (155 years ago), with the ligature fj nn used
once in line 1 and the ligature 4 air used once at the end of line 4. On the right, a sample printed
in the Irish Echo in America in 1890 (110 years ago), which uses no ligatures at all.

Page 5

The AAT/OpenType model as currently applied to Latin seems to have been developed only to
cater for decorativeligation, but as we have seen, ligation may not be simply decorative. Editorial
choices regarding spacing, legibility, and so on were made in preparing the texts above. Such
choices may be considered significant in textual analysis; certainly as noted above the presence
of bind-runes in Runic texts is likely to be considered significant by runologists. Use of ZERO-WIDTH
LIGATOR to effect typographic ligation would permit researchers to sort and search taking ligatures
into account, because they would be explicitly marked in plain text by the encoding.

Other forms of ligation vs. non-ligation are significant as well: in ISO/IEC JTC1/SC2/WG2 N2141,
I noted that

For most languages, Latin fi and flligatures are not optional in good typography (Turkish and Azerbaijani
require a distinction to be made between fi and fi but presumably permit fl ligatures.) ... The end-user
probably cannot [reprogram the ligature management mechanism to override automatic font ligation].
But he or she can choose to insert or delete a ZERO-WIDTH LIGATOR. An “unintended nasty consequence”
could, for instance, make a font unusable for Turkish or Azerbaijani — a problem avoided by the use or
non-use of ZERO-WIDTH LIGATOR.

Ligatures of fi (fi are proscribed in Turkic Latin environments. The current model puts the
burden of providing a specific “Turkic” level of ligation into their fonts upon the designers. How
many designers are linguistically literate enough to anticipate this? The number is certainly a very
small subset of font designers. With zZERO-WIDTH LIGATOR, a language-independent and script-
independent solution, users will be able to select, manually or automatically depending on
inputting software, the ligatures required, and the need to have fonts containing an explicit
Turkic option does not arise, as the ZERO-WIDTH LIGATOR solution is general at the level of coding.

NOTE: Being conservative, and keeping to 16 Turkic languages which could make use of the
Turkish i/1 distinction, and bearing in mind the fact that some of these populations presently
use the Arabic or Cyrillic scripts, the user community potentially requiring Turkic handling of
the filigature is approximately 105,750,000. Of these, we know that 62% of them (the Turks and
the Azeris) are in fact writing with the i/1 distinction. That’s 66 million users.

In the discussions to date, we have seen an attachment by aficionados of the AAT/OpenType
model to its purported richness, but failing the introduction of a ZERo-wIDTH LIGATOR which selects
glyphs based on coded character triplets, the end user is stuck with whatever tables a designer has
seen fit to include in his font, which could well render a great many Latin fonts unusable to up to
a hundred million Turkic-speaking users. Yet the UCS already permits coded-character-sequence
based glyph selection for Brahmic scripts; it is illogical that we not do so the same for European
scripts.

10. Examples of Greek typographic ligatures. Early Greek typography makes use of a very rich set
of ligatures.

1,non beneuolentiam pariunt §
tor [eges eft alieno fémpﬂ inagro.
appeilamus,non @vvov, X, AUZHY
Navely By dUTS EMIUE : E?()lendl

lefle aliis quod tibi defit, fed de

liis adfie. Eft ergo potius,vt notz
Jiéyepms 7is Nuoghs e 0 xaad mes's:

On the left, a text in Latin and Greek, both making use of typographic ligatures (ca. 1770, 230 years
ago). On the right, a ligature for the word sta.Qo ‘near’.

Page 6

& AY AOS Huroe Inth' XUS'DJ wu- TTAYAOZ dovhog Inoov Xowotov, xAn-
n;)ongw\gg acpwe,w;uﬁv@' de Lal~ TOS AITOOTOAOC, OPWQOLOUEVOS ELG EVOLY-

VéALOV g0V, (O TOETNYYEINATO OLd TV
)%;ov 828 (o za&‘ emrra/\gvm Jka, W TQOPNTWV CVTOV €V YQOQOIS ayloLg,)

Y N @UCP”"W aw'rg] %’“‘P‘”’g apays,) TTEQL TOV VIOV QUTOV, (TOV YEVOUEVOU €% OTTEQ-
) qocf cwb’ ')QUO/-&USW@?}" Uatog Ao ot 0dQra, ToV 0QLODEV-
LTS Aa.C:a’l x, aup;c;, 'zxoe,zaﬂsv— TOG ULOU OE0V €V OUVAUEL ROTO TTVEVUAL
@\ %l«;_,. SR 'mc qu’ ®sod o &wd’,‘“‘ x3 m&;;ux. aYLOOoVVNG €E aVAOTAOEMS VEXQMDV Inoov
APt NG , CE owu,gnovwg V{-,w.pa)v InaoJ’Xe,L;odbfru Kue,tou Xototov tov Kvgiov nuwv, du o0 ehd-

[Fouev oLV %ol OITOCTOAV ELG VITOXONV
,&g] S ,(9,,),7;1; vmxoLw m—) . o) ,
L d¥ ov ngo X" e,w “ALw m TLoTEWS €V TAOLY TOlG £€0veoLy, VITéQ TOV

seg oo mea Gi Bvear Iﬂ'éf-"m ovo;.ux'mc aw,; o oig “1’9 OVOUATOS CUTOV, EV Ol EOTE RO....

On the left, text printed by Robert Estienne in a font by Claude Garamond, Paris 1550 (450 years
ago), showing an extremely complex array of ligatures; on the right, the same text (Romans 1: 1-6)
transcribed. Which is simpler, using markup to represent the text, or using the ZERO-WIDTH
LIGATOR? Setting this text would be time-consuming either way — but the ZERO-WIDTH LIGATOR is
portable in plain text.

e/

70 ivaL piv TEPI TLTPOS owmocopcevo:o ¢

/
XEPViba & audimoros Tpoyew Emexue

~ !/ \ / /

XOAT] HPUGELY, VTP apupEoio AEbyTog,

!/ \ / \ s /7
viJaslou- mapa 3¢ Zeomy éravvaae ¢

Modern font revival of Alexander Wilson’s 1756 Greek typeface, with 17 tying ligatures.

11. Ligatures in Old Hungarian. Old Hungarian is perhaps one of the best examples with regard
to this discussion. The principal reason that Old Hungarian has not already been accepted for
coding in the UCS is the ligation requirement. The basic set consists of 45 letters, a set of 79
“canonical” ligatures promulgated by Hungarian experts on the net, and a set of 63 ligatures
which I had found in two other sources. The “official” expert view is that the 63 additional
ligatures are “unsafe” (whatever that means) and that only the 79 should be supported. It is my
belief that one of the reasons for this is the space limitation of the currently-available PC
implementations of Old Hungarian fonts. I can find no principled reason for not accepting these
additional ligatures as authentic ligatures (found as they are in texts expounding the use of
ligatures in the Old Hungarian script). Indeed, the Hungarian experts want to insist that the 79
“canonical” ligatures be explicitly encoded in the UCS, and have not accepted my assertions that
the character/glyph model supports the Old Hungarian ligation requirements. In part, this is
because of the vague nature of the current model, which would have ligatures either on or off; I
cannot tell the Hungarians “no problem, in plain text you can just use ZERO-WIDTH LIGATOR and you
will be fine”, but instead have to refer them to as-yet-unavailable AAT/OpenType technologies,
which, as presently constituted, offer no plain text mechanism for ligature presentation, which
the Hungarians don’t like. It is for this reason that the Hungarian experts insist on hard coding of
their ligatures even in the UCS, so that they are available when required. ZERO-WIDTH LIGATOR would
guarantee that whenever required, a ligature could be coded, while leaving ordinary
representation available for general purposes. In fact, of the 79 “safe” ligatures, six of them are not
even considered by these experts as ligatures, but rather are viewed as Devanagari @ ksa
sometimes is, as unique indivisible characters, analysed by shape only. (The experts even give
dubious “Egyptian” scarab-beetle etymologies to explain these “bug signs”.) All of these have
normal ligature transliteration decompositions, and if ZERO-WIDTH LIGATOR were available, it would

Page 7

be far easier to assure the Hungarian experts that P + zwL + B + zwL + X would be used to represent
+ ambwith concomitant support for lexical, sorting, and searching operations. Of the 63 “unsafe”
ligatures, the Old Hungarian data shows the extreme example of & Oskdnt. But this is no different
from Devanagari S=IT rs¢yarm where the sequences C + ZWL + A + ZWL + O + ZWL + P+ ZWL + C + ZwL
+Fand T+ + T+ + T+ + T+ T+ can each point to unique glyph cells in a font.

PX = K NP =N AP =& N¢ = K FRNMA =% [Nt =R PN =41 AX =X A = >
Pe=$ =K M=4& Nt =it XP =¥ H=F PA=A M= N AOP = 5P
FA = A =& AC= A NC =k A=A [+NNAt=F PA=A AM=HN AOPCY = ~&
PEX=00C (BR=0 A=K Nr = Iy 1B = I8 g Xp =% Bt=% AN =A
PG = X W= BX = O NK = N HO=X |N=d A = K P=¢ AT = I
P& = AP =& k= AP =R NN =N F=¢ B=8 PNrt=¢+ MPN=MN
PN = A A= & PR=% A= & M=0 R=¢ =K r=q Mt =M
PIY =% At = A X=x At = A MP =M thA=%X et=ea W= MIAP =N
PN=4 A=A = N =R MPN = M CA =& OtA = & CO=0¢ MB =M
Xp=X P =% G=x N =5 NP=N NN = N 00 = ® RP =B MN = MY
X&=X =% G=x A=K NN =M M= =% RENK =08 PAY =X
Xr=X Xt =% = AR =& Nr=W AO = A APO=1 CAOPCr =& BP=¢
Xt =X ’=% 0=« A=K PAX=X A=K (=X NRTC= MK #NF = 3
XC=X =% & = Ir = PAXY = & PN = # T = % NG =« A = X
To=1 TN = W CN=J Ft=1 PNY = R PN = P OPC = & NG+ = o N = K
10=3% AP = R NP = FRNI = Ot bt = % oC = ¢ NM = M

12. Rules for ligation in Fraktur German. From Albert Kapr, Fraktur: Form und Geschichte der
gebrochenen Schriften. Mainz: Hermann Schmidt. 1993. ISBN 3-87439-260-0. My translation.

2. Fraktur ligatures: h f f i IR U fehfifipft et g (ch k FiflIfR N ch GO B R tt tz)

The summarized rules of use (ignoring the case of the commonly known §):

— Ligatures are used if they do not disrupt linguistic correctness: doclj, Ruct, hofien, verfilst, flach,
oit, lallen, [Fijeh], fie, Wajjer, A, vetten, Katse (doch, Ruck, hoffen, verfilzt, flach, oft, lallen,
[Filch], e, Waller, A}, retten, Katze)

— They are not employed in word compounds: auffordern, Schilfinjel, Schuupftuch (auffordern,
Schilfinlel, Schnupftuch)

— Word stems must be observed: id) fanfte (ich kaufte), but single letters at the ends of words
are not ‘detached’: gefanit, Anfl. (gekauft, Aufl.)

— Syllables are not relevant: jaftig (faftig) is set with a ligature; the word stem is ‘Saft’.

— Should three letters which appear together, of which a ligature could be made from any two
of them, the syllable-division decides: pfiffig, Offisier, Sonfflenr (pfiffig, Offizier, Souffleur)

— Ligatures are not used to save space. Exceptions: ¢, ¢f, § and § (ch, ck, tz and B)

There are apparently no ligature triples in Fraktur. Note the recently discussed example 2dachStube
Wachstube ‘wax tube’ vs. achjtube Wachfitube ‘guardroom’.

13. Costs of ZERO-WIDTH LIGATOR implementation. In the short term, it is true that the provision of
a ZERO-WIDTH LIGATOR will not solve all problems immediately, and it does (or could) necessitate a
reanalysis of recommended practice with regard to the current AAT/OpenType model. At the
same time, however, it must be noted that the takeup of that model has been less than admirable,
so we are not talking about a huge change in coding practice which will costs millions to a great
many companies. To date I have been informed of only one product that implements the current
AAT/OpenType model, and I am unconvinced that this is the best model given the ligation
requirements of European scripts (which are a good deal greater than the use of f-ligatures in
English and German).

Page 8

I argue that a single consistent mechanism for ligature formation will benefit users of the UCS,
that this is already present in the coding conventions for Brahmic scripts, and that the greatest
number of user needs can be satisfied by harmonizing European ligature selection with the
proven-successful mechanism used for Brahmic scripts.

John Jenkins asked me what mechanism I would employ to achieve ligature variantsbut I say that
the same mechanism used for Devanagari er al. will serve here. % + : + T yields @, but it may also
yield &. The same sort of thing happens in Tibetan. Mechanisms exist in Devanagari WorldScript
and Tibetan (third-party) WorldScript to allow the user to select variant ligatures — but the
underlying encoding (used for sorting and searching) specifying that a ligature is used remains
the same, and whatever mechanism is used for those scripts should serve just as well for
European scripts. The fact is that the current Brahmic model works perfectly well, and is superior
to the ad-hoc AAT/OpenType ligature model, because it is consistent with established UCS
principles of using coded character sequences to specify glyph selection. There is no need to
make European scripts a non-plain-text exception, since ligation behaviour in European scripts,
while less extensive than it is in Brahmic, can easily benefit from the use of the same principles,
if we will only choose, sensibly, to normalize now.

Use of zErRO-WIDTH LIGATOR makes glyph selection simpler and application-independent, since
applications will have to deal with doublets and triplets of base-character + combining-character
sequences in any case — ZERO-WIDTH LIGATOR simply adds a new set of coded-character-to-string
vectors.

Practically speaking, with regard to cursor placement, etc., implementation of ZERO-WIDTH LIGATOR
is no different from implementation of sorr HYPHEN. With XPress now, when selecting text
containing the sorr HYPHEN, I often meet with the invisible soFrT HYPHEN character between two
other characters in a word. It took me only a moment to learn that this occurred, and that was
years ago; it is second nature to me now.

13. Excerpted discussion of the ZERO-WIDTH LIGATOR from the Unicode list, with comments.

John Jenkins said:

I haven’t seen anyone claim that ligation control should be handled entirely by software. The
OpenType/AAT model is explicitly opposed to that assumption.

Well, that is a fault in the analysis that led to the present AAT/OpenType model. It works for trivial
substitutions like standard English f-ligature behaviour. It fails in the long term where more
complex ligation behaviour is indicated. But it’s not a total failure — because the AAT/OpenType
model already supports the basic model of Brahmic character-based glyph selection. The failure
is insisting on trying to do Latin ligation with a different model, i.e., without explicit encoding.
Abandon this and you are left with something that works in all contexts.

The end user still has complete control over the process. The software merely enables this and provides
default behavior.

But the choice and formatting of the user (i.e. the specific ligature behaviour selection) is not
preserved in plain text. This is another fault that can be easily abandoned.

It would be possible to write such an editor for Mac OS 9 in about a page of code. We’re working on
sample code and demo applications to show how this can be done. And it’s been possible to do ever since
we released the late lamented GX five years ago.

When will such an editor be available? It wasn’t available 5 years ago either.

Adobe InDesign — and admittedly non-cheap program — can handle an awful lot of Latin ligatures. I
believe it could handle anything you put in your OpenType font, at least manually. Given InDesign’s
extensive plug-in architecture, it would be possible to get it to do whatever you want.

Page 9

If, and only if, you are a computer programmer and can write a plug-in. Most users and font
designers are not programmers. Even expert users like me are not able to do this. ZERO-WIDTH
LIGATOR puts real control at the fingertips of the end user, and facilitates the vectoring of glyphs for
the designer. Surely this benefits everyone. The font designer and the end user are the people who
have to deal with the provision and use of ligatures in actual text. The big companies have already
done the right thing for Brahmic scripts, and now only need to accept a single logical model and
employ the same model for Latin that we promulgate to everyone else.

There are two issues here. One is getting system software support. The other is getting applications to
take advantage of the system software support. The latter can be an enormous uphill battle, as our
experience getting people to support ATSUI shows.

System software that supports the Brahmic paradigm should be able to be configured to
implement ZERO-WIDTH LIGATOR with a minimum of effort and expense.

The former is also enormously problematical. The problem is that the TrueType spec doesn’t offer any
direct support for mapping multiple characters to single glyphs — the presumption is that this is handled
in the AAT/OpenType tables. I don’t know how OpenType libraries like UniScribe or CoolType work, but
I know enough about the guts of ATSUI to say that it would be fairly difficult to get it to handle zEro-wiDTH
LIGATOR;

Not at all. If e + :* = é, why shouldn’t f+ zwL + [= fI?

ZERO-WIDTH NON-LIGATOR would be comparatively simple. I would imagine that OpenType would have
similar problems. Basically zERO-WIDTH LIGATOR would be useless except for a plain-text exchange
mechanism, and even there it would be problematical.

It is a question of ensuring that certain strings of characters point to certain glyph cells. You guys
have been telling us font designers for years that smart fonts is the way to go. Well, I for one
believed you, and I am telling you that I can’t get what I need from your present model, but with
a simpler model (already compatible with AAT/OpenType as applied to Brahmic) we have no
problems at all, apart from a short-term model overlap.

I think it’s a bit on the naive side to assume that just adding ZERO-WIDTH LIGATOR would solve the problem.
We’d be three or four years at best before we’d get support at the OS level and then down to the app level.
The point is that there is already a mechanism in place on both Windows and the Mac that can solve the
problem. We’d be far better off IMHO to define exchange formats for cross-platform use that includes
ligation information.

[am aware of the temporal problem. I can live with it; the UCS is forever. I am, however,
convinced that ZERO-WIDTH LIGATOR is the simplest and best solution. Your “mechanism in place on
the Mac” is not in place on the Mac, except in a technology which has not been snapped up by
hardly anyone. Sorry, gods know I don’t like to say this, but there is no mechanism for this on my
Mac, and the mechanism that you are promulgating does not serve my needs. It is needlessly
complex and foo open-ended. It burdens me, if I want to make and Old Church Slavonic font that
handles all kinds of OCS typography, with knowing what all the possible permutations of ligatures
could be, but this is is impossible to know, since the permutations can differ from document to
document and even from sentence to sentence within a document. What I need is a way to type
what I need and to have the data preserved in plain text. You can automate that input to your
heart’s content for Latin f-ligatures. Just give us a consistent coding model for ligature behaviour
for European and Brahmic scripts alike. Bite the bullet - this problem will not go away till you do
what we tell you we need! The problem has been identified and discussed for a decade already.
The AAT/OpenType model has not been implemented, and it is inadequate. A simpler model,
compatible with AAT/OpenType and current Brahmic practice, exists, and if you implement it
you will serve the user. You need to stop trying to cheat the rendering engine by pretending that
Latin f-ligatures can be handled without character coding. Why do we not handle non-standard
Arabic glyph behaviour with markup, instead of with an explicit ZERO-WIDTH JOINER and ZERO-WIDTH
JOINER? Your (pl) arguments are just as valid for that situation as they are for Latin ligature

Page 10

behaviour. Either character-code sequence points to glyph cell, or that kind of selection should
always be handled by markup. The mixed model is inadequate and problematic. Character-code
sequence is by far and away more preferable.

q

But ligatures that are in free distribution with non-ligated forms are exactly the kind of thing that ought
to be specified using style/formatting information applied to the run of characters: it does not have
anything to do with the meaning of the text but is purely there for presentation purposes.

Peter Constable said:

Not so: ZERO-WIDTH JOINER/ZERO-WIDTH NON-JOINER also have no relation to the meaning of coded
text string — they only deal with text presentation.

Ligation in this case can be handled using such a mechanism, selected by the user using some UI device,
with the OS/rendering engine applying a feature that applies the appropriate substitution. In such cases
of ligation, it should not be a requirement that the ligature be retained when exchanged via plain text any
more than should the choice of typeface, point size, bold, italic, etc. Such presentation information does
not belong in plain text.

No, because italic markup switches between fonts (as opposed to switching typeface), and ligation
selects specific cells within a font.

If we start talking about encoding in Unicode all presentation distinctions in ancient documents that
might prove to be significant (but also might not), won’'t we end up turning this character encoding
standard into a glyph encoding standard? Maybe this rhetorical question is reactionary and that is could
be feasible to add such to Unicode in a controlled manner. Just sounds scary.

My 1849 Irish bible is not “ancient”. Anyway, the ZERO-WIDTH LIGATOR is just a way of doing
something we already do in the standard in order to effect an identical kind of glyph selection
behaviour with Brahmic scripts and fonts. ¢ J

Asmus Freytag said:

What is at the heart of this recurring request is that support for many scripts (or older typographies) is
incomplete without an interchangeable method of indicating the precesence or absence of ligatures.

Correct.

Posing this question allows us to consider the full-featured typorgraphic and aesthetic requirements for
ligation — as well as any inherent regularities. Once we have a design in place for interchanging ligatures
with marked up text, we can revisit that and see whether replacing markup instructions by character
codes gives better results.

This is a waste of time. We already have a working model with viRama, and ZERO-WIDTH LIGATOR is
analogous to that and its implementation would make the logic for font implementation for all
these scripts the same.

Both concepts (‘ligate here’, ‘don’t ligate here’) can in principle be expressed with HTML or XML style
markup - I have seen too little discussion of what this markup should be like, and what the consequences
are of it being present in the middle of words. Is that something that the HTML/XML community wants
to deal with?

Doing this would be just as ad-hoc as the current AAT/OpenType model is, for European scripts,
and all we are talking about is character-based glyph cell selection.

The strongest arguments in favor of character codes come from those who have for long time needed to
‘trick’ various applications into supporting languages that they were not explicitly designed for. If
character codes would result in ‘enabling’ many of these implementations, by letting the author
communicate with the rendering engine, so to speak, that is itself a valid argument to consider. (It would
need some actual case studies where this approach is shown to work).

I performed such “tricks” in order to prepare the present document.

Page 11

Still, even that would need to be contrasted with the cost to applications that do not know about these as
characters and end up showing ‘boxes’.

I could live with this in the short term. The long-term advantages to the designer and the user far
outweigh this minor inconvenience.
q

Yes. There is definitely an issue of how to accomplish what one wants in a way that will be implemented.
For example, if the solution relies on language tags (e.g. dictionary based solutions), then it is of little use
if companies don’t provide support for your language.

Gary Roberts said:

Which is, of course, unacceptable, given the number of the world’s languages.

On the other hand, the sorT HYPHEN is generally implemented, and supports languages that haven’t even
been invented yet. Now, one could argue whether SOFT HYPHEN is best implemented as markup or as the
addition of a new character. I tend to read and create markup files by hand. My tendency is to prefer
markup when there is some span to the markup. The more characters the markup is likely to affect, the
more I prefer it to adding a character. SOFT HYPHEN is an example where there is no span at all, and it
makes sense to solve the issue with a SOFT HYPHEN character. I see ZERO-WIDTH LIGATOR as a substitute for
markup having a span of two or three characters, which still makes it attractive as a new character
solution. It also seems more flexible.

Yes! As I said above, markup could substitute for ZERO-WIDTH JOINER and ZERO-WIDTH NON-JOINER just
as “easily”. But it would be absurd to do so.

Say that I often deal with fonts that have only ligature pairs, given the choice of ffi or ffi, I always prefer
Jfi, but my colleague prefers ffi. We both prefer ffi as a single ligature if it exists in the font. What markup
gives each of us the results we prefer? For &=zERO-WIDTH LIGATOR, the answer is f&fi for me, and ff&i for my
colleague. Note that ZERO-WIDTH NON-LIGATOR is not useful for this case.

I agree, ZERO-WIDTH NON-LIGATOR is not useful here, but the solution is simple:
1. For an encoded sequence f&f&i, if <ffi> exists, print it.
2. If <ffi> does not exist, but <ff> exists, print it and ignore the second &.
3. If <ffi> and <ff> do not exist, but <fi> exists, print it and ignore the first &.
4. If <ffi> and <ff> and <fi> do not exist, ignore both &s.
5. If <ffi> does not exist, but <ff> and <fi> exist, and the user prefers f<fi> to <ff>i, user
deletes the first &.

Search engines that are not markup savvy (including my eyes) find markup more disruptive than a single
character, particularly if it occurs frequently.

Search en-gines that are not mark-up sav-vy (in-clud-ing my eyes) find mark-up more dis-rup-tive than
a sin-gle char-act-er, par-tic-u-lar-ly if it occ-urs fre-quent-ly.

Search en<SH>gines that are not mark<SH>up sav<SH>vy (in<SH>clud<SH>ing my eyes) find
mark<SH>up more dis<SH>rup<SH>tive than a sin<SH>gle char<SH>act<SH>er,
par<SH>tic<SH>u<SH>lar<SH>ly if it occ<SH>urs fre<SH>quent<SH>ly.

Note that I have chosen relatively non-intrusive markup.

The arguments above show that we should not be using markup for ligation because the
character-sequence-to-glyph model is already there and should be preferred. But Gary’s example
is good, especially in the “Show Invisibles” option that good applications offer: suf&f&icient
would be friendlier than su<LIG>ffi</LIG>cient in contexts where invisible characters and
markup are displayed to the user.

q

Asmus Freytag said:

Page 12

The beauty of character codes as controlling agents lies in the fact that they directly interact with the ligating
engine’s context processing. As has been pointed out on the Unicode list, f<zwi>fis supported immediately,
as long as dumb fonts or unrelated processes can handle it as a zero-width character (ignorable).

Only in a situation which has a meta-markup turning on one (or more) levels of ligature class.
This mixes markup with coding for the same operation (glyph selection) and is not consistent
with VIRAMA/ZERO-WIDTH JOINER conventions.

q

With zZERO-WIDTH LIGATOR, the font designer has to actively add all sequences of the form:

Mark Davis said:

ufn “ws»

+ ZERO-WIDTH LIGATOR + “i” -> “fi” ligature
“f” + ZERO-WIDTH LIGATOR + “f” -> “ff” ligature

if those ligatures are to work with ZERO-WIDTH LIGATOR. There is no magic wand that tells the software how
ZERO-WIDTH LIGATOR would work, otherwise.

Yes. The same principles we use for sequences of base and combining characters apply. For the
user, this could be handled by input, as it is (at least minimally) in XPress. For the designer, he or
she has to do this for all precomposed glyphs of combining characters anyway (at least for
precomposed characters which are post-normalization). What’s the difference? zero-wiDTH
LIGATOR makes the designer’s job easier: he or she knows that certain coded-character sequences
will select the vectored glyphs; this is the best use of the smart font model.

q

[Mark Davis’ model above] is not the context I was envisaging at all. My understanding was that those
concerned with the Latin alphabet would have fonts containing “f” + “i” -> “fi” ligature (and so on), and
a global ligature-on setting would cause these rendering glyphs to be used, while a global ligature-off
setting would cause these rendering glyphs to not be used.

Lloyd Anderson said:

The problem is that the global ligature on/off model mixes markup with character coding.

There is no statement that I have seen made by Everson that would require throwing out such an
implementation.

It would be cleaner if fi/fl ligatures were also encoded with ZERO-WIDTH LIGATOR. Users are now
presented in some (few) applications like XPress with an option to use these ligatures or not. It’s
handled now by XPress by explicit ligature encoding, which will tempt many developers to kludge
a solution by coding ligature characters in the Private Use Zone. That’s not what we want, is it?. It
interferes with options like spell-checking, sorting, and searching. Transferability of text could be
severely reduced as will be seen in the coding of fi, f1, ffi, and fflin this PDF document in plain text,
which uses the usual “second-font” ligature kludge. No harm is done by teaching the user that, to
do ligation properly, a ZERO-WIDTH LIGATOR is used. Users have learned to employ SOFT HYPHEN this
way already.

There would be three kinds of cases (at least), and in all three of them, ligature rendering glyphs would
be provided in the fonts.

A. Use of ligatures controlled by global settings, as the above example for Latin “fi”, as Devanagari, as
Arabic.

B. Blocking of ligatures in particular cases (using zERO-WIDTH JOINER if cursive connections need to be
preserved)

C. Requiring ligatures in particular cases (for those, Old Hungarian and others which work similarly,
triples like X + ZERO-WIDTH LIGATOR + Y would be built into fonts when the fonts support such ligatures).

Page 13

Everson is of course quite correct that the majority case for quite a number of alphabets is non-ligatured.
Using Arabic or Devanagari or Latin “fi” examples simply does not address that situation, and is no
counterexample to it nor any argument against it. Latin, Arabic, Devanagari need one sort of support,
several alphabets named by Everson need another sort of support, and neither sort of support needs to
exclude the other.

I don’'t see how the VIRAMA/ZERO-WIDTH LIGATOR analogy doesn’t solve this. Look at
Roman/Fraktur/Gaelic requirements (and indeed Turkic Latin requirements), which have quite
diverse ligation requirements; but the support required is the same as that for Brahmic. I contend
that Latin is no different from any other European script — the Gaelic, Fraktur, and Turkic
examples should show this. Latin ligation cannot be automated.

That is what I meant by saying there is no difference, that the use of ZERO-wIDTH LIGATOR adds no new
mechanismto the functioning of the system, it only adds a single code which is to be disregarded on some

level in processes like sorting and (optionally) searching.

I would say “(optionally) in processes like sorting and searching”. Cf. the discussion of bind-runes

above.
q

I wouldn’t necessarily expect each ligature to have its own (i.e. individual) style run. In general, it's more
likely that the font vendor has created the font to support varying levels of ligatures, and the user specifies
a particular level of ligation for an entire paragraph or larger run of text, possible the entire document.

Peter Constable said:

The range of options, as shown in Greek and Gaelic above, may be too complex for the designer
to handle or predict. Better to leave the burden of ligature setting to the user, with automatic
insertion of ZERO-WIDTH LIGATOR in trivial instances like Latin f-ligatures (with user deletion or
special inputting settings for things like Turkic override of f- ligatures where necessary).

In other words, the burden on the font designer is exactly the same, save for a minor detail. Thus it seems
the implementations required to support ZERO-WIDTH LIGATOR VS. ZERO-WIDTH NON-LIGATOR should be fairly
comparable. Some comments have suggested otherwise,

I don'’t see a value in ZERO-WIDTH NON-LIGATOR. It requires a mix of levels and differs from the
Brahmic model for glyph-cell selection. ZERO-WIDTH LIGATOR is like viRaMA: if present it selects a
glyph cell; if absent, no such selection is made. It is analogous the combining character model -
if present, a precomposed glyph is selected; if such a glyph is not present, a base character and a
zero-width combining character is selected (with possible bad centring of the diacritic).

Marco Cimarosti said:

A non-historical example for the need to control ligatures in plain text has already been done: the “fi” ligature
in Turkish. In most roman fonts, the dot over “i” disappears in the “fi” ligature, because it merges with the “f”’s

ws»

top. This aesthetic adjustment is perfectly innocent in most languages, because the dot on “i” has no special
meaning (it is just an heritage from handwriting). In Turkish, however, dotless “i” is a separate letter so, in
certain fonts, the ligature loses the distinction between “fi” and “fi”.

I've suggested in an earlier message in this thread that ideally all runs of text should be tagged to indicate
their language.

Only a small subset of the world’s languages have been given taggable codes.

If this is done, then it would be possible for that information to be used by the rendering engine in
shaping the text and for the font developer to specify that the “fi” ligature not be formed for Turkish but
that it be formed for other languages. (Current score, as I recall: OpenType already provides support for
such language-specific substitution; such support in not currently available in AAT but is being
considered.)

Page 14

And how are the orthographic rules for all these languages to be accessed? Is there an
orthographic register? (There is not, and even if there were, as shown for Gaelic above, it might
interfere with the accurate representation of historical texts. With ZERO-WIDTH LIGATOR, you don’t
have this problem.) Up to 16 Turkic languages could make use of the Turkish fi convention
discussed here. What happens when a language (like Greek or Irish) can be written in many fonts
with different ligation requirements or options? Ligatures like air (4) will only be present in some
Irish fonts, but no one would complain if switching from 4od41%e in a Watts font led to a
representation of 40041R10€ in a Newman font, since Newman fonts never had such ligatures
traditionally anyway. Using ZERO-WIDTH LIGATOR to link character-sequences to glyph cells
(ignoring the ZERO-WIDTH LIGATOR if no X-zwL-Y triplet is available in the smart font) is by far and
away the simplest solution to this chronic problem.

q

A font vendor, right now, can map the unassigned characters from 2060-2069, E0000-EOFFF to the empty
glyph. If we end up adding ZERO-WIDTH NON-LIGATOR and/or ZERO-WIDTH LIGATOR, then they will go in one of
those positions. Rendering engines should (but may not) currently filter out all unassigned characters in
this range, since their effect on rendering cannot be predicted. But once ZERO-WIDTH NON-LIGATOR OT ZERO-
WIDTH LIGATOR are approved and allocated, the rendering engine can pass them through to the font table
execution code. Once that is done, then ZERO-WIDTH NON-LIGATOR would work with no further action by the
font vendor. The vendor would have to add the extra ligature mappings to the font for ZERO-WIDTH LIGATOR
to work. That’s why ZERO-WIDTH NON-LIGATOR is simpler to implement than ZERO-WIDTH LIGATOR.

Mark Davis said:

How does this work for eazla/ez1a? What about the Runic example given above? There are no
obligatory ligatures in Runic, so turning ligation on globally is obviously nof a solution, and the
model you and Asmus Freytag have suggested wtih ZERO-WIDTH NON-LIGATOR is very impractical for
Runic, as it is for Latin-Gaelic or Latin-Fraktur. (Estonian Fraktur uses no ligatures. We could
exhaustively investigate Fraktur as used in Danish, Swedish, Norwegian, Latvian, Lithuanian,
Estonian, Finnish, and Sdmi, to try to come up with a hierarchy of language-specific
instantiations of rules, but the X-zwL-Y model is far simpler for the font designer and the end user,
and apart from possible input settings, is not dependent on further language-specific table
implementations by programmers. Like SOFT HYPHEN, ZERO-WIDTH LIGATOR will support “languages
that haven’t even been invented yet”. This glyph-selection model is already the one implemented
for Brahmic conjuncts, Brahmic consonant + vowel-sign sequences, and Latin base-character +
combining-character sequences.
q

The typographic-aesthetic ligatures are not orthographically motivated [in Swedish], but typographically
motivated: the (normal) glyphs overlap in an ugly manner, and if someone cares enough (especially for
larger sizes), a ligature is formed that looks better. In modern use (or its lack of modern use at present for
that matter) there is no orthographic implication whatsoever. Some maintain, apparently without
evidence, that these ligatures do have an orthographic significance at morpheme boundaries. However,
some example ligatures, given in some (Swedish) typography books, are for letter combinations that
would, for Swedish, only occur for compound words: ffj and ffb, in incomplete example listings. In
addition, the second gin, e.g., “tuggummi” (chewing gum), which subword does that second g belong to?
Is it the last letter of “tugg” (chewing) or the first letter of “gummi” (gum)? Here these two g-s have been
amalgamated into a single g. So what would be so horrible about doing a milder form of joining over a
subword boundary? In the books on typography that I have looked in, they happily provide some
examples of ligatures. There is no “by the way, don’t use them over subword boundaries” or similar side
remark.

Kent Karlsson said:

Such rules are given for Fraktur German, as shown above.
Instead it is taken as obvious that if you want to use ligatures to make the glyph sequence a bit better
looking, you are free to do so anywhere in a word. They are, after all, only there for aesthetic reasons, and

not ligating is no better looking over a subword boundary than anywhere else.

Page 15

Then automatic insertion of ZERO-WIDTH LIGATOR in Swedish is always appropriate for certain letter
pairs and triplets. No problem.

3. There has been no agreed upon way of accessing [such ligatures].

This is part of the problem with markup.

So prior to the existence of AAT or OpenType fonts, it was hard and unsafe (for font changes) to use them,
even if such non-English ligatures were present in a font.

That’s why we propose ZERO-WIDTH LIGATOR — to make it agreed and safe and portable.

If a glyph sequence [...] has no overlapping glyphs, or the overlap looks ok anyway, no ligature should be
used, and if a ligature is used anyway it should look exactly like the unligated glyph sequence. Any
occurrences of preligated Latin characters from the FBxx block should be replaced by their compatibility
decomposition, or otherwise look exactly like if it were compatibility decomposed (though the caret
management will be different in the latter case). (An fi ligature should look different from an f followed
by a dotless i. This is not an issue for Swedish per se, but may be for Turkish names, of persons or places,
that are properly spelled in an otherwise Swedish text.)

So you delete ZERO-WIDTH LIGATOR for Turkish names. Simple! And expected for Turkish text.

q

Michael would then be arguing that even though most writing styles for Latin don’t require explicit
ligation control to be legible, some do. We need to add ZERO-WIDTH LIGATOR and ZERO-WIDTH NON-LIGATOR tO
support those writing styles.

John Jenkins said:

No, we just need ZERO-WIDTH LIGATOR, and its absence. And this should be generalized for all
typographic ligatures in Latin. Cost to the user? Minimal, since most current applications don’t
deal with ligatures at all, and the most common fligatures could be handled with a simple all-
on/Turkic/all-off switch (which still would insert (or refrain from inserting) ZERO-WIDTH LIGATOR in
the requisite positions). Otherwise you maintain a mixed model for ligature production, which is
untidy and unnecessary.

Peter Constable said:

True, but I think the question still has some validity in the following way: In one scenario, a font designer has
to list all sequences of the form “f” + “i” -> “fi” ligature “f” + “f” -> “ff” ligature while in the other scenario the
font designer has to list all sequences of the form “f” + ZERO-WIDTH LIGATOR + “i” -> “fi” ligature “f” + ZERO-WIDTH
LIGATOR + “f” -> “ff” ligature

Actually, the type designer would probably want to provide both sets of sequences for those cases were
ligation control wasn’t done by ZERO-WIDTH LIGATOR and ZERO-WIDTH NON-LIGATOR.

But it would be a lot simpler if it were done with zERO-wIDTH LIGATOR for all languages in all
European scripts.

As an aside, on this I would absolutely insist — that ZERO-WIDTH LIGATOR and ZERO-WIDTH NON-LIGATOR be at
most an optional way of specifying ligation control in plain text, allowing for ligation control in higher-
level protocols without them. It would seriously undermine the technology that Apple’s been selling for
five years to make them obligatory.

I really hate to criticize Apple, but who has bought and implemented this technology? Only
Adobe? Even Apple doesn’t have a text editor available that implements it!

In other words, the burden on the font designer is exactly the same, save for a minor detail. Thus it seems the
implementations required to support ZERO-WIDTH LIGATOR VS. ZERO-WIDTH NON-LIGATOR should be fairly
comparable. Some comments have suggested otherwise, however; for instance, I seem to recall John Jenkins
saying that implementing support for ZERO-WIDTH NON-LIGATOR in ATSUI would be fairly simple, but that he

Page 16

True.

True.

wasn’t at all sure if or how support for zERO-wIDTH LIGATOR could be added. Why should there be that much
difference?

The complication comes in trying to make sure that fonts without the ZERO-WIDTH LIGATOR version of the
tables will work correctly. This will mean adding ZERO-WIDTH LIGATOR to the list of characters whose display
we (almost always) actively suppress — things like the directionality overrides are rarely mapped explicitly
to invisible glyphs in fonts, so we have to do this ourselves to make sure that black boxes don’t litter the
landscape of text that uses them.

The more difficult part is adding a step to parse the text for ZERO-WIDTH LIGATOR and, if it is present,
checking the font to see if a particular feature allows for the equivalent ligature to be formed if there is no
ZERO-WIDTH LIGATOR and overriding the user’s collection of set features to include it.

That doesn’t mean it’s not the right thing to do. And it’s not very different from what one

has to do with base-character and combining-character sequences.

They

This is similar to what we have to do in other situations. E.g., if a font doesn’t have a Unicode cmap, we
make one and cache it, so that fonts will work “properly” even if they haven’t explicitly been updated to
support the new behavior. ZERO-WIDTH LIGATOR would require similar functionality on our part — old fonts
should continue to do the right thing without being formally updated to do so.

don’t do this now, as I say — a major user of my Armenian Utiltiies has just said that he’s
starting to have problems with them on his new G4. I hope Apple can make tools available to help
me update my fonts — but I think updating, ZERO-WIDTH LIGATOR or not, is inevitable given the tools

we have at present.

There’s no harm in this, if it’s really necessary. Font designers will welcome this, I should think.

Peter

I agree. Certainly even smart fonts and Apple’s TEC remapping could break all currently available
cmap-less non-Roman font kludges until Apple makes editable TEC software available to us. My
WorldScript resources are already starting to break with System 8.6 on the G4, and at present I can

To work, you'd need to have:

f+i-->fi

f+SHY+i-->fi

(f + ZERO-WIDTH LIGATOR +1i) --> fi

(f + SHY + ZERO-WIDTH LIGATOR + 1) --> fi
(f + ZERO-WIDTH LIGATOR + SHY +1i) --> fi

All explicitly in your list of potential ligatures in your font.

q

As we consider cost of implementations, I wonder just how many fonts there are in existence in each of
these categories? I.e. what’s the cost impact on vendors and users in relation to existing fonts of use of
ZERO-WIDTH LIGATOR (Or ZERO-WIDTH NON-LIGATOR) versus the cost of any other alternative? 1 suspect the
costs in relation to existing fonts that Mark refers to is not very high (but feel free to correct me if I'm
wrong) on the assumption that the technologies required to make smart-font ligation work (AAT and OT)
haven’t been around that long and/or have been utilised by only a very small number of applications.

Constable said:

do nothing about it to serve the users of my software.

q

John Jenkins said:

Both AAT and OT allow for bitmap fonts that have all the smarts needed to render anything in Unicode
properly. The distinction isn’t between stupid bitmap fonts and smart outline fonts, it's between stupid
fonts and smart fonts.

Page 17

Yes but there aren’t very many smart fonts now (I can’t make them), and as far as “anything in
Unicode” is concerned, well, Unicode can’t handle the requirements adequately without zero-
WIDTH JOINER as far as I can see. You can represent what is actually in Unicode, but this doesn’t
support bind-runes according to the plain-text requirement, for example.

In practice, GX and AAT don’t filter out any unassigned characters before doing the character-glyph
mapping, and I doubt that OT systems do, either. We could add them to the list of Unicode code points
whose “empty box” display is actively suppressed, but that’s a different matter — and we’d rather not,
because that could potentially interfere with the last resort font and font substitution (or whatever we're
calling it these days).

The Last Resort Font will have to be updated many times. Look at all the as-yet-unencoded scripts
in the Roadmap.

The real complication with ZERO-WIDTH LIGATOR is to update the rendering engine so that older fonts will
continue to work “properly” without having to be updated. This is something we’ve been pushing really
hard to do and we’d want to continue to do it. Realistically, however, we might be forced simply to punt
and say that zeEro-wiDTH LIGATOR would only work with fonts explicitly updated to support its use.

If that’s what’s required, than that’s what we should do.
q

I have always assumed that the technology which specifies a default (assuming the font supplies the
glyphs), whether obligatory for Latin or not, would remain in place. (I assume this system does not choke
if a font does not contain particular ligature glyphs, it simply renders without ligatures at that point...?)
The use of ZERO-WIDTH LIGATOR and ZERO-WIDTH NON-LIGATOR, just like the use of ZERO-WIDTH JOINER and ZERO-
WIDTH NON-JOINER (at least in most instances) would be special overrides, the second for overriding
obligatory ligatures (which could be used in Latin, of course), [though I think zERO-WIDTH JOINER would do
for the ZERO-WIDTH NON-LIGATOR uses? if not, why not, perhaps I missed something earlier...]

Lloyd Anderson said:

I think I have dealt with this above.

Tables of triples X + ZERO-WIDTH LIGATOR + Y would be needed only for [scripts like Old Hungarian Runes,
Germanic Runes, etc.], they would not be needed for Latin, and would not appear in Latin fonts? At least
not for ligatures which were included in the obligatory set.

I disagree. What is the “obligatory” set? What about Turkic?

I hesitate to speculate (given my limited knowledge) further concerning any, to me still hypothetical,
need for zEro-wiDTH LIGATOR for Latin. Though I can conceive that there might be a split between
normally-obligatory ones and optional ones, that still could be handled as for Arabic script, by having
global settings to include none/only obligatory/obligatory + preferred/all (or whatever the details of the
current implementation are).

There are too many potential options to make this an attractive solution. ZERO-WIDTH LIGATOR is
simpler.
q

A method of ligature control has been suggested using ZERO-WIDTH LIGATOR and which would require a
smart font to intervene in order to exercise complete ligature control. While I am not opposed to the
introduction of the ZERO-WIDTH LIGATOR (even enthusiastic that they would be available), as a font architect
and font designer, I feel that we mixing apples and oranges if we require the ZERO-WIDTH LIGATOR to only
be usable through a smart font mechanism; because it is inconsistent with present complex script
rendering conventions.

John Fiscella said:

Page 18

I have tried to show that European script requirements are complex with regard to ligation, even
for the most common Latin ligatures (since fi is proscribed in Turkic, and since 1 doesn’t exist as
a ligature in Gaelic).

It should be a rendering engine which substitutes an fi ligature from f + ZERO-WIDTH LIGATOR + i. Ideally,
ligatures in Latin script should be handled in the same manner as ligatures in Arabic script (for example).

I disagree, because Arabic shaping behaviour is truly obligatory, and ligatures in Latin are not
universally obligatory. The Brahmic model is more applicable to the full range of requirements.

If they can’t be, then the conventions/implementation of the rendering engine/model may need to be
fixed. Of course, the real problems are that in Latin: 1) most ligatures are discretionary (this could,
depending on the stylized design of the font, potentially occur for every glyph pair to be rendered);
and/or 2) ligature substitution is layout-dependent.

Consistent use of ZERO-WIDTH LIGATOR should fix this problem.

If a rendering engine is built into an operating system to handle these services, then it also must be
layout-aware to cover all ligature cases in all scripts. Somehow, the implementations currently available
in some operating systems (either through op system versions or through “language kits”) only go half
way. Applications, however, can take over and supply the missing functions (for example substituting fi
for f + ZERO-WIDTH LIGATOR + i), provided that a mechanism exists for calling up the fi glyph from the font.
This is easily done if a glyph is encoded.

Yes, but do we want to encode 130 Old Hungarian ligatures? Or ~50 Gaelic Latin ligatures?

It seems like the only clean way to do it is to encode a complete set of Latin ligatures (1,482 would do)

I am sure you have not counted Gaelic ligatures, which are not just pairs, but sometimes triplets.
in Unicode (not relying on the character/glyph model for Latin ligatures). If this were done:

1) application developers could install any type of ligature management, limited only by their
imagination and language requirements (or, more preferably, a script could be supplied to do this by
the user and read by the application);

2) consistency would be maintained with other script rendering mechanisms, some of which are in
place today;

3) glyph-naming dilemmas would be eliminated;

4) it could be made backward-compatible with many existing legacy fonts.

I hope so. Certainly the end user needs to be the one with ultimate control over text representation.

The difficulties of using the character/glyph model in cases where layout is an influencing factor has been
discussed frequently and are obvious to an application developer. Conversely, implementation of the
character/glyph model is no problem at the font level for reencodable dumb fonts.

To summarize:

Consistent Latin script ligature management can be easily implemented if

1) the ZERO-WIDTH LIGATOR is implemented; and

2) two sacred cows are abandoned (no more ligature encoding in Unicode and relaxation of the
character/glyph model for the case of non-complex script ligatures).

I don’t think further encoding of explicit ligatures in the UCS is really necessary. The character-
sequence glyph-selection mechanism employing zERO-WIDTH LIGATOR should make the point
moot.

14. Ligatures in Arabic. I am not arguing strenuously on this point, but one possible additional
use of ZERO-WIDTH LIGATOR could be to assist in Arabic ligature selection. This is not the same thing
as Arabic shaping behaviour. So, given » + ¢ + ¢ = z>>, it might be possible to use ZERO-WIDTH
LIGATOR to select true ligatures, so: CHIZWL+ +ZWL+ = i; CHIWL+ g+ =pF. The Arabic model
may not require this, however. FINIT.

Page 19

